• Title/Summary/Keyword: parametric image

Search Result 152, Processing Time 0.033 seconds

A Study on the Structuring Element for the Small Target Detection in the IR Image (적외선 영상에서 소형 표적탐지를 위한 Structuring Element 구조에 관한연구)

  • 김도종;이부환;임종광;구연덕
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.211-214
    • /
    • 2002
  • A novel structuring element for the morphological filter is proposed in order to detect a small target at a long distance. The modeling of the structuring element is based on the real data and implemented by parametric model approach. Several synthetic

  • PDF

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

  • Jia, Xibin;Xiao, Yujie;Yang, Dawei;Yang, Zhenghan;Lu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5179-5196
    • /
    • 2019
  • To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847±0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981±0.002, 0.981±0.002, 0.991±0.007 and 0.999±0.0008, respectively.

Real-time Water Quality Monitoring System Using Vision Camera and Multiple Objects Tracking Method (비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템)

  • Yang, Won-Keun;Lee, Jung-Ho;Cho, Ik-Hwan;Jin, Ju-Kyong;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.401-410
    • /
    • 2007
  • In this paper, we propose water quality monitoring system using vision camera and multiple objects tracking method. The proposed system analyzes object individually using vision camera unlike monitoring system using sensor method. The system using vision camera consists of individual object segmentation part and objects tracking part based on interrelation between successive frames. For real-time processing, we make background image using non-parametric estimation and extract objects using background image. If we use non-parametric estimation, objects extraction method can reduce large amount of computation complexity, as well as extract objects more effectively. Multiple objects tracking method predicts next motion using moving direction, velocity and acceleration of individual object then carries out tracking based on the predicted motion. And we apply exception handling algorithms to improve tracking performance. From experiment results under various conditions, it shows that the proposed system can be available for real-time water quality monitoring system since it has very short processing time and correct multiple objects tracking.

A Restoration of Degraded Medicine Images Based on Optimized Parametric Wiener Filter (최적화된 매개변수 위너필터를 이용한 훼손된 의료영상의 복원)

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1055-1063
    • /
    • 2012
  • The noise of image is added by many environmental factors. Therefore, we need to remove these noises using the conventional filtering methods, which are optimized based on the statistical characteristic of noise. In direct restoration method, there is an inverse filter and the wiener filter. Here, the wiener filter is the optimized filter in the view of least square method. First, we are going to study the inverse filter, wiener filter, constraint least square filter. Second, in order to control the quantity, we use the parameters instead of the power spectrum ratio. But, these parameters have the conflicting condition, therefore, we optimized the variables using parametric wiener filter which adjust the application appropriately. In the simulation results, the contrast of the degraded image was enhanced and the noise was removed. Comparative experimentation was demonstrated edge preserving and noise removing property.

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Deep Image Annotation and Classification by Fusing Multi-Modal Semantic Topics

  • Chen, YongHeng;Zhang, Fuquan;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.392-412
    • /
    • 2018
  • Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.

Moving Target Indication using an Image Sensor for Small UAVs (소형 무인항공기용 영상센서 기반 이동표적표시 기법)

  • Yun, Seung-Gyu;Kang, Seung-Eun;Ko, Sangho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1189-1195
    • /
    • 2014
  • This paper addresses a Moving Target Indication (MTI) algorithm which can be used for small Unmanned Aerial Vehicles (UAVs) equipped with image sensors. MTI is a system (or an algorithm) which detects moving objects. The principle of the MTI algorithm is to analyze the difference between successive image data. It is difficult to detect moving objects in the images recorded from dynamic cameras attached to moving platforms such as UAVs flying at low altitudes over a variety of terrain, since the acquired images have two motion components: 'camera motion' and 'object motion'. Therefore, the motion of independent objects can be obtained after the camera motion is compensated thoroughly via proper manipulations. In this study, the camera motion effects are removed by using wiener filter-based image registration, one of the non-parametric methods. In addition, an image pyramid structure is adopted to reduce the computational complexity for UAVs. We demonstrate the effectiveness of our method with experimental results on outdoor video sequences.

Image Encryption by C-MLCA and 3-dimensional Chaotic Cat Map using Laplace Expansions (C-MLCA와 Laplace 전개를 이용한 3차원 카오스 캣맵에 의한 영상 암호)

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1187-1196
    • /
    • 2019
  • Information security has become a major challenge with the advent of cloud and social networking sites. Conventional encryption algorithms might not be suitable for image encryption because of the large data size and high redundancy among the raw pixels of a digital image. In this paper, we generalize the encryption method for of color image proposed by Jeong et al. to color image encryption using parametric 3-dimensional chaotic cat map using Laplace expansion and C-MLCA. Through rigorous experiments, we demonstrate that the proposed new image encryption system provides high security and reliability.

Review of Reverse Design Process for Freeform Envelope Using 3D Scanning (비정형 건축물의 외장재 제작 시공을 위한 3D 스캐닝에 의한 역 설계 프로세스 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.17-18
    • /
    • 2015
  • In manufacturing industry, image scanning technique has made enormous progress in past decades. 3D models have been also very important to continuously monitor the related spatial information for freeform buildings. The process of shape making of 3D scanning is as follows: mesh surface segmentation, NURBS surface generation, and parametric solid model generation. We will review the process and applying process. Especially in the construction industry, 3D data collection by laser scanning has become an high quality 3D models. Therefore, in this research, we have an effort to review construction of reverse design process for freeform envelope using 3D scanning. The technology enables many 3D shape engineering and design parameterization of reverse engineering in the construction site.

  • PDF