• Title/Summary/Keyword: parametric image

Search Result 152, Processing Time 0.023 seconds

Assessment of Hyperperfusion by Brain Perfusion SPECT in Transient Neurological Deterioration after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis Surgery (천측두동맥-중대뇌동맥 문합술 후 발생한 일과성 신경학적 악화에서 뇌관류 SPECT를 이용한 과관류 평가)

  • Lee, Jeong-Won;Kim, Yu-Kyeong;Lee, Sang-Mi;Eo, Jae-Sun;Oh, Chang-Wan;Lee, Won-Woo;Paeng, Jin-Chul;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.267-274
    • /
    • 2008
  • Purpose: Transient neurological deterioration (TND) is one of the complications after extracranial-intracranial bypass surgery, and it has been assumed to be caused by postoperative transient hyperperfusion. This study was performed to evaluate the relationship between TND and preoperative and postoperative cerebral perfusion status on brain perfusion SPECT following superficial temporal artery - middle cerebral artery (STA-MCA) anastomosis surgery. Materials and Methods: A total of 60 STA-MCA anastomosis surgeries of 56 patients (mean age: $50{\pm}16$ yrs; M:F=29:27; atherosclerotic disease: 33, moyamoya disease: 27) which were done between September 2003 and July 2006 were enrolled. The resting cerebral perfusion and cerebral vascular reserve (CVR) after acetazolamide challenge were measured before and 10 days after surgery using 99mTc-ethylcysteinate dimer (ECD) SPECT. Moreover, the cerebral perfusion was measured on the third postoperative day. With the use of the statistical parametric mapping and probabilistic brain atlas, the counts for the middle cerebral artery (MCA) territory were calculated for each image, and statistical analyses were performed. Results: In 6 of 60 cases (10%), TND occurred after surgery. In all patients, the preoperative cerebral perfusion of affected MCA territory was significantly lower than that of contralateral side (p=0.002). The cerebral perfusion on the third and tenth day after surgery was significantly higher than preoperative cerebral perfusion (p=0.001, p=0.02). In TND patients, basal cerebral perfusion and CVR on preoperative SPECT were significantly lower than those of non-TND patients (p=0.01, p=0.05). Further, the increases in cerebral perfusion on the third day after surgery were significant higher than those in other patients (p=0.008). In patients with TND, the cerebral perfusion ratio of affected side to contralateral side on third postoperative day was significantly higher than that of other patients (p=0.002). However, there was no significant difference of the cerebral perfusion ratio on preoperative and tenth postoperative day between patients with TND and other patients. Conclusion: In patients with TND, relative and moderate hyperperfusion was observed in affected side after bypass surgery. These finding may help to understand the pathophysiology of TND.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.