• Title/Summary/Keyword: parameter visualization

Search Result 92, Processing Time 0.015 seconds

A Spatial Statistical Approach to Migration Studies: Exploring the Spatial Heterogeneity in Place-Specific Distance Parameters (인구이동 연구에 대한 공간통계학적 접근: 장소특수적 거리 패러미터의 추출과 공간적 패턴 분석)

  • Lee, Sang-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.3
    • /
    • pp.107-120
    • /
    • 2001
  • This study is concerned with providing a reliable procedure of calibrating a set of places specific distance parameters and with applying it to U.S. inter-State migration flows between 1985 and 1900. It attempts to conform to recent advances in quantitative geography that are characterized by an integration of ESDA(exploratory spatial data analysis) and local statistics. ESDA aims to detect the spatial clustering and heterogeneity by visualizing and exploring spatial patterns. A local statistic is defined as a statistically processed value given to each location as opposed to a global statistic that only captures an average trend across a whole study region. Whereas a global distance parameter estimates an averaged level of the friction of distance, place-specific distance parameters calibrate spatially varying effects of distance. It is presented that a poisson regression with an adequately specified design matrix yields a set of either origin-or destination-specific distance parameters. A case study demonstrates that the proposed model is a reliable device of measuring a spatial dimension of migration, and that place-specific distance parameters are spatially heterogeneous as well as spatially clustered.

  • PDF

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.