Investigation for Shoulder Kinematics Using Depth Sensor-Based Motion Analysis System (깊이 센서 기반 모션 분석 시스템을 사용한 어깨 운동학 조사)
-
- Journal of the Korean Orthopaedic Association
- /
- v.56 no.1
- /
- pp.68-75
- /
- 2021
Purpose: The purpose of this study was to analyze the motion of the shoulder joint dynamically through a depth sensor-based motion analysis system for the normal group and patients group with shoulder disease and to report the results along with a review of the relevant literature. Materials and Methods: Seventy subjects participated in the study and were categorized as follows: 30 subjects in the normal group and 40 subjects in the group of patients with shoulder disease. The patients with shoulder disease were subdivided into the following four disease groups: adhesive capsulitis, impingement syndrome, rotator cuff tear, and cuff tear arthropathy. Repeating abduction and adduction three times, the angle over time was measured using a depth sensor-based motion analysis system. The maximum abduction angle (θmax), the maximum abduction angular velocity (ωmax), the maximum adduction angular velocity (ωmin), and the abduction/adduction time ratio (tabd/tadd) were calculated. The above parameters in the 30 subjects in the normal group and 40 subjects in the patients group were compared. In addition, the 30 subjects in the normal group and each subgroup (10 patients each) according to the four disease groups, giving a total of five groups, were compared. Results: Compared to the normal group, the maximum abduction angle (θmax), the maximum abduction angular velocity (ωmax), and the maximum adduction angular velocity (ωmin) were lower, and abduction/adduction time ratio (tabd/tadd) was higher in the patients with shoulder disease. A comparison of the subdivided disease groups revealed a lower maximum abduction angle (θmax) and the maximum abduction angular velocity (ωmax) in the adhesive capsulitis and cuff tear arthropathy groups than the normal group. In addition, the abduction/adduction time ratio (tabd/tadd) was higher in the adhesive capsulitis group, rotator cuff tear group, and cuff tear arthropathy group than in the normal group. Conclusion: Through an evaluation of the shoulder joint using the depth sensor-based motion analysis system, it was possible to measure the range of motion, and the dynamic motion parameter, such as angular velocity. These results show that accurate evaluations of the function of the shoulder joint and an in-depth understanding of shoulder diseases are possible.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The strength characteristics of the three orthogonal splitting planes, known as rift, grain and hardway planes in granite quarries, were examined. R, G and H specimens were obtained from the block samples of Jurassic granites in Geochang and Hapcheon areas. The directions of the long axes of these three specimens are perpendicular to each of the three planes. First, The chart, showing the scaling characteristics of three graphs related to the uniaxial compressive strengths of R, G and H specimens, were made. The graphs for the three specimens, along with the increase of strength, are arranged in the order of H < G < R. The angles of inclination of the graphs for the three specimens, suggesting the degree of uniformity of the texture within the specimen, were compared. The above angles for H specimens(θH, 24.0°~37.3°) are the lowest among the three specimens. Second, the scaling characteristics related to the three graphs of RG, GH and RH specimens, representing a combination of the mean compressive strengths of the two specimens, were derived. These three graphs, taking the various N-shaped forms, are arranged in the order of GH < RH < RG. Third, the correlation chart between the strength difference(Δσt) and the angle of inclination(θ) was made. The above two parameters show the correlation of the exponential function with an exponent(λ) of -0.003. In both granites, the angle of inclination(θRH) of the RH-graph is the lowest. Fourth, the six types of charts, showing the correlations among the three kinds of compressive strengths for the three specimens and the five parameters for the two sets of microcracks aligned parallel to the compressive load applied to each specimen, were made. From these charts for Geochang and Hapcheon granites, the mean value(0.877) of the correlation coefficients(R2) for total density(Lt), along with the frequency(N, 0.872) and density(ρ, 0.874), is the highest. In addition, the mean values(0.829) of correlation coefficients associated with the mean compressive strengths are more higher than the minimum(0.768) and maximum(0.804) compression strengths of three specimens. Fifth, the distributional characteristics of the Brazilian tensile strengths measured in directions parallel to the above two sets of microcracks in the three specimens from Geochang granite were derived. From the related chart, the three graphs for these tensile strengths corresponding to the R, G and H specimens show an order of H(R1+G1) < G(R2+H1) < R(R1+G1). The order of arrangement of the three graphs for the tensile strengths and that for the compressive strengths are mutually consistent. Therefore, the compressive strengths of the three specimens are proportional to the three types of tensile strengths. Sixth, the values of correlation coefficients, among the three tensile strengths corresponding to each cumulative number(N=1~10) from the above three graphs and the five parameters corresponding to each graph, were derived. The mean values of correlation coefficients for each parameter from the 10 correlation charts increase in the order of density(0.763) < total length(0.817) < frequency(0.839) < mean length(Lm, 0.901) ≤ median length(Lmed, 0.903). Seventh, the correlation charts among the compressive strengths and tensile strengths for the three specimens were made. The above correlation charts were divided into nine types based on the three kinds of compressive strengths and the five groups(A~E) of tensile strengths. From the related charts, as the tensile strength increases with the mean and maximum compressive strengths excluding the minimum compressive strength, the value of correlation coefficient increases rapidly.
Purpose : Although the average life expectancy has increased due to advances in medicine, mortality due to cancer is on an increasing trend. Consequently, the number of terminally ill cancer patients is also on the rise. Predicting the survival period is an important issue in the treatment of terminally ill cancer patients since the choice of treatment would vary significantly by the patents, their families, and physicians according to the expected survival. Therefore, we investigated the prognostic factors for increased mortality risk in terminally ill cancer patients to help treat these patients by predicting the survival period. Methods : We investigated 31 clinical parameters in 157 terminally ill cancer patients admitted to in the Department of Family Medicine, National Health Insurance Corporation Ilsan Hospital between July 1, 2000 and August 31, 2001. We confirmed the patients' survival as of October 31, 2001 based on medical records and personal data. The survival rates and median survival times were estimated by the Kaplan-Meier method and Log-rank test was used to compare the differences between the survival rates according to each clinical parameter. Cox's proportional hazard model was used to determine the most predictive subset from the prognostic factors among many clinical parameters which affect the risk of death. We predicted the mean, median, the first quartile value and third quartile value of the expected lifetimes by Weibull proportional hazard regression model. Results : Out of 157 patients, 79 were male (50.3%). The mean age was
Purpose: We can evaluate function of kidney by Glomerular Filtration Rate (GFR) test using
Purpose Glomerular Filtration Rate(GFR) is an important indicator for evaluating renal function and monitoring the progress of renal disease. Currently, the method of measuring GFR in clinical trials by using serum creatinine value and 99mTc-DTPA(diethylenetriamine pentaacetic acid) renal dynamic scan is still useful. After the Gates method of formula was announced, when 99mTc-DTPA Renal dynamic scan is taken, it is applied the GFR is measured using a gamma camera. The purpose of this paper is to measure the GFR by applying the Gates method of formula. It is according to effect activity and matrix size that is related in the GFR. Materials and Methods Data from 5 adult patients (patient age = 62 ± 5, 3 males, 2 females) who had been examined 99mTc-DTPA Renal dynamic scan were analyzed. A dynamic image was obtained for 21 minutes after instantaneous injection of 99mTc-DTPA 15 mCi into the patient's vein. To evaluate the glomerular filtration rate according to changes in activity and matrix size, total counts were measured after setting regions of interest in both kidneys and tissues in 2-3 minutes. The distance from detector to the table was maintained at 30cm, and the capacity of the pre-syringe (PR) was set to 15, 20, 25, 30 mCi, and each the capacity of post-syringe (PO) was 1, 5, 10, 15 mCi is set to evaluate the activity change. And then, each matrix size was changed to 32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 to compare and to evaluate the values. Results As the activity increased in matrix size, the difference in GFR gradually decreased from 52.95% at the maximum to 16.67% at the minimum. The GFR value according to the change of matrix size was similar to 2.4%, 0.2%, 0.2% of difference when changing from 128 to 256, 256 to 512, and 512 to 1024, but 54.3% of difference when changing from 32 to 64 and 39.43% of difference when changing from 64 to 128. Finally, based on the presently used protocol, 256 × 256, PR 15 mCi and PO 1 mCi, the GFR value was the largest difference with 82% in PR 15 mCi and PO 1 mCi. conditions, and at the least difference is 0.2% in the conditions of PR 30 mCi and PO 15 mCi. Conclusion Through this paper, it was confirmed that when measuring the GFR using the gate method in the 99mTc-DTPA renal dynamic scan. The GFR was affected by activity and matrix size changes. Therefore, it is considered that when taking the 99mTc-DTPA renal dynamic scan, is should be careful by applying appropriate parameters when calculating GFR in the every hospital.