• Title/Summary/Keyword: paralog

Search Result 13, Processing Time 0.029 seconds

Effect of Recombinant Olive Flounder Stanniocalcin on Serum Calcium Levels (혈청 칼슘 농도에 미치는 넙치 유전자 재조합 스타니오칼신의 효과)

  • Shin, Ji-Hye;Jung, Yu-Jung;Han, Yoon-Hee;Lee, Kyun-Young;Lee, Kyung-Mi;Kaneko, Toyoji;Sohn, Young-Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • Stanniocalcin 1 (STC1) is a glycoprotein hormone that is important in the maintenance of calcium and phosphate homeostasis in both fish and mammals. STC1 and its paralog STC2 are expressed in multiple tissues in fishes, although the physiological roles of piscine STCs are still unclear compared with those of mammals. In this study, we cloned olive flounder STC1 (ofSTC1) and ofSTC2 cDNAs into pET28a vector and used E. coli Rosetta (DE3) as the host strain for protein expression. Expression experiments were carried out using isopropyl-$\beta$-D-thiogalactoside (IPTG) and nickel affinity chromatography. We could identify the recombinant proteins as single 29.5 kDa (ofSTC1) and 33.2 kDa (ofSTC2) bands in the insoluble fraction on sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE). These results indicate that ofSTC1 and ofSTC2 were expressed as insoluble proteins in E. coli. Furthermore, the injection of ofSTC1 protein into juvenile tilapia resulted in a decrease of the serum calcium level. These results suggest that the purified fish STC1 and STC2 proteins may be used to elucidate the physiological role of STCs in fishes.

CTRP9 Regulates Growth, Differentiation, and Apoptosis in Human Keratinocytes through TGFβ1-p38-Dependent Pathway

  • Jung, Tae Woo;Park, Hyung Sub;Choi, Geum Hee;Kim, Daehwan;Lee, Taeseung
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.906-915
    • /
    • 2017
  • Impairment of wound healing is a common problem in individuals with diabetes. Adiponectin, an adipocyte-derived cytokine, has many beneficial effects on metabolic disorders such as diabetes, obesity, hypertension, and dyslipidemia. C1q/TNF-Related Protein 9 (CTRP9), the closest paralog of adiponectin, has been reported to have beneficial effects on wound healing. In the current study, we demonstrate that CTRP9 regulates growth, differentiation, and apoptosis of HaCaT human keratinocytes. We found that CTRP9 augmented expression of transforming growth factor beta 1 ($TGF{\beta}1$) by transcription factor activator protein 1 (AP-1) binding activity and phosphorylation of p38 in a dose-dependent manner. Furthermore, siRNA-mediated suppression of $TGF{\beta}1$ reversed the increase in p38 phosphorylation induced by CTRP9. siRNA-mediated suppression of $TGF{\beta}1$ or p38 significantly abrogated the effects of CTRP9 on cell proliferation and differentiation while inducing apoptosis, implying that CTRP9 stimulates wound recovery through a $TGF{\beta}1$-dependent pathway in keratinocytes. Furthermore, intravenous injection of CTRP9 via tail vein suppressed mRNA expression of Ki67 and involucrin whereas it augmented $TGF{\beta}1$ mRNA expression and caspase 3 activity in skin of type 1 diabetes animal models. In conclusion, our results suggest that CTRP9 has suppressive effects on hyperkeratosis, providing a potentially effective therapeutic strategy for diabetic wounds.

Triclosan Resistance in a Bacterial Fish Pathogen, Aeromonas salmonicida subsp. salmonicida, is Mediated by an Enoyl Reductase, FabV

  • Khan, Raees;Lee, Myung Hwan;Joo, Haejin;Jung, Yong-Hoon;Ahmad, Shabir;Choi, Jinhee;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.511-520
    • /
    • 2015
  • Triclosan, the widely used biocide, specifically targets enoyl-acyl carrier protein reductase (ENR) in the bacterial fatty acid synthesis system. Although the fish pathogen Aeromonas salmonicida subsp. salmonicida exhibits triclosan resistance, the nature of this resistance has not been elucidated. Here, we aimed to characterize the triclosan resistance of A. salmonicida subsp. salmonicida causing furunculosis. The fosmid library of triclosan-resistant A. salmonicida subsp. salmonicida was constructed to select a fosmid clone showing triclosan resistance. With the fosmid clone showing triclosan resistance, a subsequent secondary library search resulted in the selection of subclone pTSR-1. DNA sequence analysis of pTSR-1 revealed the presence of a chromosomal-borne fabV-encoding ENR homolog. The ENR of A. salmonicida (FabVas) exhibited significant homology with previously known FabV, including the catalytic domain YX(8)K. fabVas introduction into E. coli dramatically increased its resistance to triclosan. Heterologous expression of FabVas might functionally replace the triclosan-sensitive FabI in vivo to confer E. coli with triclosan resistance. A genome-wide search for fabVas homologs revealed the presence of an additional fabV gene (fabVas2) paralog in A. salmonicida strains and the fabVas orthologs from other gram-negative fish pathogens. Both of the potential FabV ENRs expressed similarly with or without triclosan supplement. This is the first report about the presence of two potential FabV ENRs in a single pathogenic bacterium. Our result suggests that triclosan-resistant ENRs are widely distributed in various bacteria in nature, and the wide use of this biocide can spread these triclosan-tolerant ENRs among fish pathogens and other pathogenic bacteria.