• Title/Summary/Keyword: parallel to the grain

Search Result 166, Processing Time 0.027 seconds

Strength Property of Double Shear Bolted-Connections of Larch (낙엽송 부재의 이중 전단 볼트 접합부 강도 성능)

  • Park, Chun-Young;Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.7-16
    • /
    • 2005
  • This study was carried out to evaluate the structural property of double shear bolted connections in Korean Larch. For the main member, sawn lumber and Glulam were used in which thickness of lumber is 39 mm, 89 mm, 139 mm, 189 mm and Glulam 80 mm, 140 mm, 170 mm. For the side member, sawn lumber and steel plate were used in which thickness of lumber is the same of the main member and steel plate is 6mm. And connections were jointed by M12, M16, M20 bolts which were usually used for wood constructions in Korea. Directions of loading to connections were perpendicular and parallel to grain of main and side member. First, through the dowel bearing test, the dowel bearing strength was evaluated and through the bolt bending tests, the bolt bending strength was evaluated. And then experiments for the connection were performed. Obtained results from experiments were compared with calculated values by EYM and analyzed. Strength of double shear bolted connections in Korean Larch was similar or higher than calculated value by EYM. Especially when the side member was made by the sawn lumber, it was similar to the calculated value. In failure mode, the mode was effected by the knot and the dry defect. In the thin main member, it was shown mode I and as the thickness of the main member was thicker, it was changed into mode III.

Investigation of Degradation Mechanism of High Alumina Refractory in a Coal Gasifier (석탄 가스화기에서의 고알루미나 내화물의 손상 기구 규명)

  • Kim, Yuna;Lee, Jae Goo;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.638-645
    • /
    • 2009
  • High alumina refractory used in a coal gasifier was analyzed and the degradation mechanism by molten slag was investigated. The depth of refractory severely damaged by slag varied between 12~40 mm, including the adhered slag layer. The sample also showed the cracks formed in parallel to the slag/refractory interface. The degree of degradation varied with the micro-structures in the refractory. Fused alumina grains showed the uneven boundary and pore formation just along the edges, while the tablet alumina showed the slag penetrated between sintered alumina around which the formation of Al-Fe phase was observed. Calcium aluminate cements were not observed at the high temperature zone near the slag/refractory interface, probably due to dissolution into molten slag. Around large grains of alumina, rod shape alumina, which appeared to be recrystallized during cooling, were observed, and large pores were also formed around those grains. Therefore, in high alumina refractories, hot molten slag dissolves the bonding phase and rod-shape alumina phase is recrystallized upon cooling. During this process, cracks are developed due to structural change, and the degradation occurs by physical causes such as structural spalling.

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF

Detailed Bathymetry and Seabed Characteristics of Wangdol-cho, Hupo Bank in the East Sea (동해 후포퇴 왕돌초 주변의 정밀해저지형 및 해저면 특성 분석)

  • Kim, Chang Hwan;Park, Chan Hong
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.533-540
    • /
    • 2014
  • The Wangdol-cho area, in the Hupo Bank, plays a very important role in main fishing grounds, leisure tourism and marine environmental researches of the East Sea. We analyzed the detailed bathymetry and classified the seabed characteristics of the Wangdol-cho area, based on seafloor backscattering images and sediment grain size. The Hupo Bank is developed in parallel with the eastern coastal line of Korean peninsula, and the shallowest area (Wangdol-cho) of the Hupo Bank is located along the eastern part of Hupo Port. The Wangdol-cho comprises three summits; north summit, middle summit, and south summit. The middle summit area among the three summits has the most shallow water depth with minimum about 6 m. The north summit shows about 8 m minimum depth and the south summit about 9 m. The bathymetry data around three summits represent undulating seabeds with many scattered underwater reefs and shallow water depth. The area between the underwater reefs, the flat seafloor in the northeastern part of the survey site, and the western steep slope area have relatively coarse sediments such as sandy gravel and gravelly sand. The bathymetry in the western side of the Wangdol-cho shows steep slope seabed, extending to the Hupo Basin. Fine sediments including mud and silty sand occur in the Hupo Basin area of the survey site. The submarine detailed topography and the analysis of the seafloor characteristics of the survey area are expected to contribute to management for marine environmental researches and sustainable use of ecosystems in the Wangdol-cho.

Effect of Distance between Finger Tip and Root Width on Compressive Strength Performance of Finger-Jointed Timber (핑거공차가 핑거접합재의 압축강도 성능에 미치는 영향)

  • Ryu, Hyun-Soo;Ahn, Sang-Yeol;Park, Han-Min;Byeon, Hee-Seop;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.66-73
    • /
    • 2004
  • Three species of Italian poplar (Populus euramericana), red pine (Pinus densiflora) and oriental oak (Quercus variabilis) were selected for this study. They were cut so that the distances between each of tips and roots for a pair of fingers were 0, 0.15, 0.30 and 0.45 mm. Poly vinyl acetate (PVAc) and resorcinol-phenol resin (RPR) were used for finger-jointing. Compressive test parallel to the grain was conducted for the finger-jointed specimens. The results were as follows: The efficiency of compressive Young's modulus of finger-jointed timber to solid wood indicated low values, whereas the efficiency of compressive strength indicated high values of more than 90% in all species, especially, it was found that those of red pine indicated markedly high values of more than 97%. The efficiency of compressive displacement of Italian poplar finger-jointed timber was 2 times higher than solid wood, and it was 1.2 and 1.3 times higher than solid woods in red pine and oriental oak, respectively. Also, it was found that 0, the distance between each tip and root for the fingers, indicated the highest efficiency of compressive strength performance in Italian poplar finger-jointed timber, and for red pine and oriental oak finger-jointed timbers, the distances of 0.15 and 0.30 were found to indicate the highest efficiency.

Geological Structures of the Hadong Northern Anorthosite Complex and its surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 북부 회장암복합체와 그 주변지역의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 2012
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Hadong northern anorthosite complex (HNAC) and the Jirisan metamorphic rock complex (JMRC) and the Mesozoic granitoids which intrude them. Its tectonic frame is built into NS trend, unlike the general NE-trending tectonic frame of Korean Peninsula. This paper researched the structural characteristics at each deformation phase to clarify the geological structures associated with the NS-trending tectonic frame which was built in the HNAC and JMRC. The result indicates that the geological structures of this area were formed at least through three phases of deformation. (1) The $D_1$ deformation formed the $F_1$ sheath or "A"-type folds in the HNAC and JMRC, and the $S_{0-1}$ composite foliation and the $S_1$ foliation and the $D_1$ ductile shear zone which are (sub)parallel to the axial plane of $F_1$ fold, and the $L_1$ stretching lineation which is parallel to the $F_1$ fold axis owing to the large-scale top-to-the SE shearing on the $S_0$ foliation. (2) The $D_2$ deformation (re)folded the $D_1$ structural elements under the EW-trending tectonic compression environment, and formed the NS-trending $F_2$ open, tight, isoclinal, intrafolial folds with the $S_{0-1-2}$ composite foliation and the $S_2$ foliation and the $D_2$ ductile shear zone with S-C-C' structure and the $L_2$ stretching lineation which is (sub)parallel to the axial plane of $F_2$ fold. The extensive $D_2$ ductile shear zone (Hadong shear zone) of NS trend was persistently developed along the eastern boundary of HNAC and JMRC which would be to the limb of $F_2$ fold on a geological map scale. The Hadong shear zone is no less than 1.4 km width, and was formed in the mylonitization process which produced the mylonitic structure and the stretching lineation with the reduction of grain size during the $F_2$ passive folding. (3) The $D_3$ deformation formed the EW-trending $F_3$ kink or open fold under the NS-trending tectonic compression environment and partially rearranged the NS-trending pre-$D_3$ structural elements into (E)NE or (W)NW direction. The regional trend of $D_1$ tectonic frame before the $D_2$ deformation would be NE-SW unlike the present, and the NS-trending tectonic frame in the HNAC and JMRC like the present was formed by the rearrangement of the $D_1$ tectonic frame owing to the $F_2$ active and passive folding. Based on the main intrusion age of (N)NE-trending basic dyke in the study area, these three deformation events are interpreted to have occurred before the Late Paleozoic.

Tidal-Flat Sedimentation in a Semienclosed Bay with Erosional Shorelines: Hampyong Bay, West Coast of Korea (해안침식이 우세한 반폐쇄적 조간대의 퇴적작용: 한국 서해안의 함평만)

  • Chang, Jin-Ho;Kim, Yeo-Sang;Cho, Yeong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • Hampyong Bay is a semienclosed and macrotidal bay which opens to the eastern Yellow Sea through a narrow inlet in the southwestern coast of Korea. In order to understand the tidal-flat sedimentation in the semienclosed setting, morphology, sediments, accumulation rate and sea cliff erosion were investigated in the tidal flat of Hampyong Bay. The tidal flat of Hampyong Bay lacks intertidal drainage systems, and generally shows the concave-upward profile whose relief is designated by marked morphological features such as high-tide beaches, intertidal sand shoals and tidal creeks. Surfacial sediments of the tidal flat mainly consist of mud, sandy mud, gravelly mud, gravelly sand and muddy gravel, thus showing the textural characteristics of multimodal grain-size distribution, poorly sorting and positive skewness. The sediments generally coarsen landward due to the increase in coarse fraction content. Sedimentary structures are deeply bioturbated, but parallel lamination and lenticular bedding are locally found in the mudflat near mean low water line. Annual accumulation rates across the tidal flat (along Line SM) average -5.2 cm/yr with a range of -45.8~+4.2 cm/yr, indicating that the tidal flat is erosional. In general, erosion rates of upper and lower tidal flat are higher than those of middle tidal flat. Seasonally, the erosion rates are much higher during spring and winter when dominant wind direction corresponds to the long axis of Hampyong Bay. Sea cliffs are eroded at a rate of 1.4 m/yr. The biggest sea cliff erosion generally occurs 1~2 months later after tidal flats were extensively eroded. Such erosions of tidal Oats and sea cliffs in the semienclosed bay setting are interpreted to be due to wind waves coupled with local sea-level rise.

  • PDF

Fabrication of a sterling silver ring with folding process (폴딩 기법을 이용한 스털링실버 링 제조 공정)

  • Kim, Ik gyu;Kim, Kwangbae;Kim, Eun-Seok;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.382-389
    • /
    • 2019
  • A novel folding process is proposed using a repeated cold-die forging and annealing to form a sterling silver ring. Sterling silver plate was cut into a doughnut shape, and lattices with 0.43-mm line-width were imprinted on it. The sample was folded by forging using dies with slopes of $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$ and annealing. For comparison, samples were also fabricated without annealing. Strain was identified by measuring the length of lattices. Vernier calipers, a Vickers hardness tester, an optical microscope, and a UV-VIS colorimeter were used to determine the size, hardness, microstructure, and body color. Without annealing, cracks occurred. However, successful deformation was possible when annealing was used. The results of macro strain measurements show that the outer diameter and width decreased, while the inner diameter and thickness increased after the final process. The maximum strain was increased 0.128 toward the parallel direction. The Vickers hardness decreased after annealing and increased after the folding process. The microstructure results showed that the grain size increased after annealing but decreased after folding. The color difference based on the Lab index was under 10 for all processes. Eventually, a doughnut-shaped silver plate was successfully deformed into a ring shape by the folding process.

Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam (과열증기 열처리 잣나무재의 물성 평가)

  • Park, Yong-Gun;Eom, Chang-Deuk;Park, Jun-Ho;Chang, Yoon-Seong;Kim, Kwang-Mo;Kang, Chun-Won;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.257-267
    • /
    • 2012
  • In this study, the method for heat treating wood using superheated steam (SHS) was designed and applied. The physical and mechanical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by SHS at $170^{\circ}C$ and 0.4 MPa for 10 hours were compared with those of non-treated and normal heat-treated wood. The amount of adsorbed water and equilibrium moisture content of the SHS treated wood were lower than non-treated wood. On the other hand the compressive strength parallel to grain and the bending strength of SHS treated wood were higher than those of non-treated wood. The hygroscopicity of SHS treated wood was similar to normal heat treated wood at $220^{\circ}C$. Internal checks that often occur during normal heat treatment were not developed at SHS treatment. Also, SHS treatment are effective in control of internal checks occurrence and resin exudation.

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.