• Title/Summary/Keyword: parallel temporal join

Search Result 2, Processing Time 0.016 seconds

Implementation and Evaluation of Time Interval Partitioning Algorithm in Temporal Databases (시간 데이타베이스에서 시간 간격 분할 알고리즘의 구현 및 평가)

  • Lee, Kwang-Kyu;Shin, Ye-Ho;Ryu, Keun-Ho;Kim, Hong-Gi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • Join operation exert a great effect on the performance of system in temporal database as in the relational database. Especially, as for the temporal join, the optimization of interval partition decides the performance of query processing. In this paper, to improve the efficiency of parallel join query in temporal database. I proposed Minimum Interval Partition(MIP) scheme that time interval partitioning. The validity of this MIP algorithm that decides minimum breakpoint of the partition is proved by example scenario and I confirmed improved efficiency as compared with existing partition algorithm.

Task Creation and Assignment based on Object Caching for Parallel Spatial Join (병렬공간 조인을 위한 객체 캐쉬 기반 태스크 생성 및 할당)

  • 서영덕;김진덕;홍봉희
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1178-1178
    • /
    • 1999
  • A spatial join has the property that its execution time exponentially increases in proportion to the number of spatial objects. Recently, there have been many attempts for improving the performance of the spatial join by using parallel processing schemes, In the case of executing parallel spatial join using the parallel machine with shared disk architecture, the disk bottleneck of parallel processing of spatial join worsens in comparison with sequential spatial join. This paper presents the algorithms of task creation and assignment to reduce the disk bottleneck caused by accessing the shared disk at the same time, and to minimize message passing between processors, This paper proposes object caching which is a higher level of abstraction than page caching, and uses it to do creation and assignment of tasks according to temporal and spatial localities for minimizing disk access time. The object caching shows the performance improvement of 50%. The task creation and assignment using localities gives the gain of 30% and 20%. Overall performance evaluation of the proposed algorithms shows 7.2 times speed up than those of sequential execution of spatial joins.