• Title/Summary/Keyword: parallel manipulator

Search Result 190, Processing Time 0.031 seconds

Algorithm or Parallel Computation for a multi-CPU controlled Robot Manipulator (복수의 CPU로 제어되는 매니퓰레이터의 병렬계산 알고리즘)

  • Woo, Kwang-Bang;Kim, Hyun-Ki;Choi, Gyoo-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.288-292
    • /
    • 1987
  • The purpose of this paper is to develope the parallel computation algorithm that enables it to minimize the completion tine of computation execution of the entire subtasks, under the constraints of the series-parallel precedence relation in each subtask. The developed algorithm was applied to the control of a robot manipulator functioned by multi-CPU's and to obtain the minimum time schedule so that real time control may be achieved. The completion time of computation execution was minimized by applying "Variable" Branch and Bound algorithm which was developed In this paper in determining the optimum ordered schedule for each CPU.

  • PDF

Effect of Joint Errors Analysis for a Cubic Parallel Device (육면형 병렬 기구에서의 조인트 오차의 영향)

  • 임승룡;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.672-675
    • /
    • 2000
  • There are many sources of errors in the parallel device. This study investigates the effect of a clearance error at a U-joint on the position and orientation errors of the platform of a new parallel device, cubic parallel manipulator. In this study, the limits of errors can be estimated for given conditions.

  • PDF

Effect of U-Joint Errors Analysis for a Cubic Parallel Device (육면형 병렬기구에서의 유니버설 조인트 오차의 영향)

  • Lim, Seung-Reung;Choi, Woo-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.789-794
    • /
    • 2000
  • This study proposes an error analysis for a cubic parallel device. There are many sources of errors in the device. An error analysis is presented based on an error model formed from the relation between the universal joint error of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in evaluating the accuracy of a parallel device.

  • PDF

A Study on the Inverse kinematic Analysis of a Binary Robot Manipulator using Backbone Curve (등뼈 곡선을 이용한 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Lee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.174-179
    • /
    • 1999
  • A binary parallel robot manipulator uses actuators which have only two stable states and is structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has the following advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators, it is very difficult to solve an inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem when the number of actuators are too much or the target position is located outside of workspace. The backbone curve is generated optimally by considering the curvature of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criteria.

  • PDF

A New Device and Procedure for Kinematic Calibration of Parallel Manipulators

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1615-1620
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and formulations of cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

  • PDF

Development of a New 6-DOF Parallel-type Motion Simulator (6자유도 병렬형 모션 시뮬레이터 개발)

  • Kim, Han-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • This paper presents the development of a new 6-DOF parallel-kinematic motion simulator. The moving platform is connected to the fixed base by six P-S-U (Prismatic-Spherical-Universal) serial chains. Comparing with the well-known Gough-Stewart platform-type motion simulator, it uses commercialized linear actuators mounted at the fixed base whereas a 6-UPS manipulator uses telescopic linear ones. Therefore, the proposed motion simulator has the advantages of easier fabrication and lower inertia over a 6-UPS counterpart. Furthermore, since most forces acting along the legs are transmitted to the structure of linear actuators, smaller actuation forces are required. The inverse position and Jacobian matrix are analyzed. In order to further increase workspace, inclined arrangement of universal joints is introduced. The optimal design considering workspace and force transmission capability has been performed. The prototype motion simulator and PC-based real-time controller have been developed. Finally, position control experiment on the prototype has been performed.