• Title/Summary/Keyword: parallel finite element analysis

Search Result 258, Processing Time 0.025 seconds

Strongly-coupled Finite Element Method Approach to Multi-scale Modelingof Polycrystalline Solids (유한요소법을 이용한 다결정 고체의 복합스케일 모델링)

  • Han Tong-Seok;Dawson Paul R.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.531-534
    • /
    • 2006
  • A multi-scale (macro-micro) finite element framework for analysis of polycrystalline solids is suggested. The proposed frame work is strongly-coupled in a sense that the two scale calculation is performed at the same time. The issue of averaging micro-scale material stress and stiffness is addressed and a strategy is proposed. The proposed framework is implemented and applied to two examples having different geometries and loading modes. It is concluded that the proposed multi-scale framework can be used for more detailed and accurate analysis compared with the single-scale finite element analysis.

  • PDF

Parallel Finite Element Analysis of the Drag of a Car under Road Condition

  • Choi H. G.;Kim B. J.;Kim S. W.;Yoo J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.84-85
    • /
    • 2003
  • A parallelized FEM code based on domain decomposition method has been recently developed for a large scale computational fluid dynamics. A 4-step splitting finite element algorithm is adopted for unsteady computation of the incompressible Navier-Stokes equation, and Smagorinsky LES(Large Eddy Simulation) model is chosen for turbulent flow computation. Both METIS and MPI library are used for domain partitioning and data communication between processors respectively. Tiburon of Hyundai-motor is chosen as the computational model at $Re=7.5{\times}10^{5}$, which is based on the car height. It is confirmed that the drag under road condition is smaller than that of wind tunnel condition.

  • PDF

Dynamic response of pile groups in series and parallel configuration

  • Sawant, V.A.;Ladhane, K.B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.395-406
    • /
    • 2012
  • Basic problem of pile foundation is three dimensional in nature. Three dimensional finite element formulation is employed for the analysis of pile groups. Pile, pile-cap and soil are modeled using 20 node element, whereas interface between pile or pile cap and soil is modeled using 16 node surface element. A parametric study is carried out to consider the effect of pile spacing, number of piles, arrangement of pile and soil modulus on the response of pile group. Results indicate that the response of pile group is dependent on these parameters.

다중 병렬판 구조의 변형률 분포해석

  • 김갑순;강대임;송후근;주진원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.585-590
    • /
    • 1995
  • This paper describes strain distribution analysis of a multiple parallel plate structure for a multi-componenet force and moment sensor. A parallel plate structure which has higher rigidity than a simple beam structure are widely used for multi-component force and moment sensor. The strain distribution in the beams of a parallel plate structure should be accurately calculated to design a high precision multi-component force and moment sensor. We derived equations to calculate the strains for multiple parallel plate structure. It reveals that results from finite element analysis and experiment are in good agreement with results from the derived equations.

Design of Two-axis Force Sensor for Robot's Finger

  • Kim, Gob-Soon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.66-70
    • /
    • 2001
  • This paper describes the design of a two-axis force sensor for robots finger. In detects the x-direction force Fx and y-direction force Fy simultaneously. In order to safely grasp an unknown object using the robots fingers, they should detect the force or gripping direction and the force of gravity direction, and perform the force control using the forces detected. Therefore, the robots hand should be made by the robots finger with tow-axis force sensor that can detect the x-direction force and y-direction force si-multaneously. Thus, in this paper, the two-axis force sensor for robots finger is designed using several parallel-plate beams. The equations to calculate the strain of the beams according to the force in order to design the sensing element of the force sensor are derived and these equations are used to design the aize of two-axis force sensor sensing element. The reliability of the derive equa-tions is verified buy performing a finite element analysis of the sensing element. The strain obtained through this process is compared to that obtained through the theory analysis and a characteristics test of the fabricated sensor. It reveals that the rated strains calculated from the derive equations make a good agreement with the results from the Finite Element Method analysis and from the character-istic test.

  • PDF

On The Parallel Inplementation of a Static/Explicit FEM Program for Sheet Metal Forming (판금형 해석을 위한 정적/외연적 유한요소 프로그램의 병령화에 관한 연구)

  • ;;G.P.Nikishikov
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.625-628
    • /
    • 1995
  • A static/implicit finite element code for sheet forming (ITAS3D) is parallelized on IBM SP 6000 multi-processor computer. Computing-load-balanced domain decomposition method and the direct solution method at each subdomain (and interface) equation are developed. The system of equations for each subdomain are constructed by condensation and calculated on each processor. Approximated operation counts are calculated to set up the nonlinear equation system for balancing the compute load on each subdomain. Th esquare cup tests with several numbers of elements are used in demonstrating the performance of this parallel implementation. This procedure are proved to be efficient for moderate number of processors, especially for large number of elements.

  • PDF

Parallel Computation on the Three-dimensional Electromagnetic Field by the Graph Partitioning and Multi-frontal Method (그래프 분할 및 다중 프론탈 기법에 의거한 3차원 전자기장의 병렬 해석)

  • Kang, Seung-Hoon;Song, Dong-Hyeon;Choi, JaeWon;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.889-898
    • /
    • 2022
  • In this paper, parallel computing method on the three-dimensional electromagnetic field is proposed. The present electromagnetic scattering analysis is conducted based on the time-harmonic vector wave equation and the finite element method. The edge-based element and 2nd -order absorbing boundary condition are used. Parallelization of the elemental numerical integration and the matrix assemblage is accomplished by allocating the partitioned finite element subdomain for each processor. The graph partitioning library, METIS, is employed for the subdomain generation. The large sparse matrix computation is conducted by MUMPS, which is the parallel computing library based on the multi-frontal method. The accuracy of the present program is validated by the comparison against the Mie-series analytical solution and the results by ANSYS HFSS. In addition, the scalability is verified by measuring the speed-up in terms of the number of processors used. The present electromagnetic scattering analysis is performed for a perfect electric conductor sphere, isotropic/anisotropic dielectric sphere, and the missile configuration. The algorithm of the present program will be applied to the finite element and tearing method, aiming for the further extended parallel computing performance.

Finite Element Analysis of Multiple Subsurface Cracks in Half-space Due to Sliding Contact

  • Lee, Sang Yun;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2001
  • A finite element analysis of crack propagation in a half-space due to sliding contact was performed. The sliding contact was simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. Single, coplanar, and parallel cracks were modeled to investigate the interaction effects on the crack growth in contact fatigue. The analysis was based on linear elastic fracture mechanics and the stress intensity factor concept. The crack propagation direction was predicted based on the maximum range of the shear and tensile stress intensity factors.

  • PDF

A dynamic analysis algorithm for RC frames using parallel GPU strategies

  • Li, Hongyu;Li, Zuohua;Teng, Jun
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1019-1039
    • /
    • 2016
  • In this paper, a parallel algorithm of nonlinear dynamic analysis of three-dimensional (3D) reinforced concrete (RC) frame structures based on the platform of graphics processing unit (GPU) is proposed. Time integration is performed using Newmark method for nonlinear implicit dynamic analysis and parallelization strategies are presented. Correspondingly, a parallel Preconditioned Conjugate Gradients (PCG) solver on GPU is introduced for repeating solution of the equilibrium equations for each time step. The RC frames were simulated using fiber beam model to capture nonlinear behaviors of concrete and reinforcing bars. The parallel finite element program is developed utilizing Compute Unified Device Architecture (CUDA). The accuracy of the GPU-based parallel program including single precision and double precision was verified in comparison with ABAQUS. The numerical results demonstrated that the proposed algorithm can take full advantage of the parallel architecture of the GPU, and achieve the goal of speeding up the computation compared with CPU.