• Title/Summary/Keyword: parallel file system

Search Result 72, Processing Time 0.015 seconds

Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis (도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발)

  • Jung, In-taek;Chong, Kyu-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.669-678
    • /
    • 2018
  • This study developed information technology infrastructures for building a driving environment analysis platform using various big data, such as vehicle sensing data, public data, etc. First, a small platform server with a parallel structure for big data distribution processing was developed with H/W technology. Next, programs for big data collection/storage, processing/analysis, and information visualization were developed with S/W technology. The collection S/W was developed as a collection interface using Kafka, Flume, and Sqoop. The storage S/W was developed to be divided into a Hadoop distributed file system and Cassandra DB according to the utilization of data. Processing S/W was developed for spatial unit matching and time interval interpolation/aggregation of the collected data by applying the grid index method. An analysis S/W was developed as an analytical tool based on the Zeppelin notebook for the application and evaluation of a development algorithm. Finally, Information Visualization S/W was developed as a Web GIS engine program for providing various driving environment information and visualization. As a result of the performance evaluation, the number of executors, the optimal memory capacity, and number of cores for the development server were derived, and the computation performance was superior to that of the other cloud computing.

Comparison of the wall clock time for extracting remote sensing data in Hierarchical Data Format using Geospatial Data Abstraction Library by operating system and compiler (운영 체제와 컴파일러에 따른 Geospatial Data Abstraction Library의 Hierarchical Data Format 형식 원격 탐사 자료 추출 속도 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Lee, Jihye
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • The MODIS (Moderate Resolution Imaging Spectroradiometer) data in Hierarchical Data Format (HDF) have been processed using the Geospatial Data Abstraction Library (GDAL). Because of a relatively large data size, it would be preferable to build and install the data analysis tool with greater computing performance, which would differ by operating system and the form of distribution, e.g., source code or binary package. The objective of this study was to examine the performance of the GDAL for processing the HDF files, which would guide construction of a computer system for remote sensing data analysis. The differences in execution time were compared between environments under which the GDAL was installed. The wall clock time was measured after extracting data for each variable in the MODIS data file using a tool built lining against GDAL under a combination of operating systems (Ubuntu and openSUSE), compilers (GNU and Intel), and distribution forms. The MOD07 product, which contains atmosphere data, were processed for eight 2-D variables and two 3-D variables. The GDAL compiled with Intel compiler under Ubuntu had the shortest computation time. For openSUSE, the GDAL compiled using GNU and intel compilers had greater performance for 2-D and 3-D variables, respectively. It was found that the wall clock time was considerably long for the GDAL complied with "--with-hdf4=no" configuration option or RPM package manager under openSUSE. These results indicated that the choice of the environments under which the GDAL is installed, e.g., operation system or compiler, would have a considerable impact on the performance of a system for processing remote sensing data. Application of parallel computing approaches would improve the performance of the data processing for the HDF files, which merits further evaluation of these computational methods.