• Title/Summary/Keyword: parallel coupled-line

Search Result 98, Processing Time 0.03 seconds

Design of Asymmetrical Parallel Coupled lines Using Finite Element Analysis (유한요소해석을 이용한 비대칭 평면형 결합선로 설계)

  • Youn, Jae-Ho;Park, Jun-Seok;Ahn, Dal;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1841-1843
    • /
    • 2001
  • Asymmetrical parallel coupled lines are used in a number of circuits such as multi-band coupler and combline type band pass filter. Although graphical results and formulas are available for the design of coupled lines, the design procedure is hard to use, because even- and odd- mode impedances are always expressed in terms of the physical geometry. In this paper, we introduce a method to find design parameter using finite element analysis. By employing the capacitance obtained by FE analysis, design parameters for each lines are extracted. To show the validity of extracted design parameter for asymmetrical parallel coupled line, we have designed and simulated a planar type combline band pass filter.

  • PDF

Modified Microstrip Filters Improving the Suppression Performance of Harmonic Signals (고조파 감쇠특성을 향상시킨 변형된 마이크로스트립 여파기)

  • 김봉수;이재욱;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1054-1060
    • /
    • 2002
  • In this paper, a new parallel-coupled-line microstrip BPF(BandPass Filter) improving the suppression performance of 2nd harmonic signals is studied. Using the consecutive pattern in coupled-line, the desired passband performance is improved and harmonic passband signal is rejected. Recalculation of classical filter design parameters(space-gap between lines, line widths and lengths) is not required. That is, after using the classical design methodology for parellel-coupled-line BPF, new filters can be easily realized by inserting periodic patterns in coupled-line. To investigate the validity of this novel technique, order-3 Butterworth BPF centered at 2.5 GHz with a 10 % FBW(Fractional Bandwidth) and order-5 Chebyshev BPF centered at 10 GHz with a 15 % FBW were used. When five and three square grooves are used, over 30 dB harmonic suppression at 2nd harmonic is achieved in simulation and experiment.

A Novel Design Method of Direct Coupled BPF(Band Pass Filter) Based on EM Simulation of Individual Resonator (개별 공진기의 EM 시뮬레이션에 기초한 새로운 직접결합 대역여파기 설계 방법)

  • Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • The BPF designed by the formula based on strip line shows the center frequency shift and distortion in filter response and this becomes more significant with higher frequency. In this paper, the novel design based on EM simulation is proposed. In the design, the filter is decomposed into individual resonators and, for each resonator, the reactance slope and the inverter values are measured and tuned to desired design values for a inverter BPF prototype. The filter composed with such resonators shows the desired filter response without further tuning. This is because possible effects of discontinuities and dispersion are included in the filter parameter extraction. The method can generally apply to all filters that can be transformed into inverter BPF prototype. The procedure is verified by designing a 5th-order SIR filter and quite general to adapt into the design of a parallel coupled line filter, and hair-pin filter.

A Low-pass Filter with Wide-stop Band Using Radial-shaped Open Stub (광대역의 저지대역을 갖는 부채꼴 형태의 개방형 스터브를 이용한 저역통과 여파기)

  • Yoon, Ki-cheol;Kim, Seong-cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1237-1242
    • /
    • 2016
  • In this paper, the low pass filter with harmonics suppression and rejection using parallel coupled-line and radial type open stub is presented. And the resultant characteristic of the proposed low pass filter is that the harmonics are suppressed and rejected in wide bandwidth due to the parallel coupled-line structure. The open stub of a low pass filter is constructed in radial type which can be used to adjust the size of filter. The size of the proposed low pass filter is $6.98{\times}7.60mm2$ and the cut off frequency is 2.45 GHz. And the filter is economical in unit cost and can be constructed easily and has the merit of mass product because the filter is composed of distributed element. Also, the widely rejected harmonics is 128 % in the bandwidth and the insertion and return losses of the low pass filter are 1.07 dB and 19.5 dB, respectively.

Design of a Novel Lumped Element Backward Directional Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기 해석 및 설계)

  • 송택영;이상현;김영태;천창율;박준석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.157-160
    • /
    • 2002
  • In this paper, a novel lumped equivalent circuit for a conventional parallel directional coupler is proposed. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even-and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3㏈ and 10㏈ lumped element directional couplers at the center frequency of 100Mhz. Furthermore, a chip type directional coupler has been designed to fabricate with multilayer configurations by employing the Low Temperature CofiredCeramic (LTCC) process. Designed chip-type directional coupler has a 10㏈-coupling value at the center frequency of 2㎓. Excellent agreements between simulations and measurements on the designed directional couplers show the validity of this paper

  • PDF

Design of Asymmetric Parallel Coupled-line Array using Finite Element Analysis (유한요소해석을 이용한 배열구조의 평면형 비대칭 결합선로 설계)

  • 윤재호;박준석;김형석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, we introduce a procedure to find design parameter for array coupled lines using 2-D finite element analysis. To extract design parameters using FE calculation, we set up several design conditions. In order to show the validity of our approach, we designed, simulated and fabricated a comb-line bandpass filter.

Semi-Lumped Compact Low-Pass Filter for Harmonics Suppression

  • Li Rui;Kim Dong-Il;Choi Chang-Mook
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.171-175
    • /
    • 2006
  • In this paper, a new semi-lumped low-pass filter with three finite attenuation poles at stopband is presented. The new structure is composed of a pair of symmetrical parallel coupled-line and a shunted capacitor. With this configuration, three finite attenuation poles can be available for 2nd, 3rd, and 4th harmonics suppression. The research method is based on transmission-line model for tuning the attenuation poles. In order to examine the feasibility of the proposed structure, a low-pass filter based on microstrip structure with harmonics suppression is designed, fabricated, and measured. The experimental results of the fabricated circuit agree well with the simulation and analytical ones.

A Study on a New Measurement Method of the Microstrip Parallel Coupled Lne Parameters (마이크로스트립 평행 결합선로 파라미터의 새로운 측정방법에 관한 연구)

  • Chang, Ik-Soo;Yoon, Young-Chul;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.139-143
    • /
    • 1988
  • A new measurement method of coupled transmission line characteristics is described. This method presents precision values of even-and odd-mode impedances as well as effective dielectric constants of symmetric parallel coupled microstrip lines from the scalar quantities obtained by transmission coefficients at two different resonance frequencies. Especially these values include dispersion effects in the measured frequency band. The measured impedances and effective dielectric constants of actually fabricated coupled lines on the Teflon substrates with low dielectric constants are good agreement with predicted values. And the experimental pass band characteristics of single section resonator by using previously designed coupled lines agree well with theoretical values.

  • PDF

Branch line directional coupler with coupled lines (결합 선로를 이용한 브랜치 선로 방향성 결합기)

  • Han, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2011
  • Directional couplers are widely used in RF and microwave applications to distribute or monitor signals. This paper presented a new structure of microstrip branch line directional coupler with coupled lines. The loose couplings of microstrip branch line directional couplers are impractical for the high characteristic impedance values required for the shunt branches. To overcome this limitation, the parallel coupled lines with the shorts were used for the high characteristic impedance. The results of the simulations and measurements were presented for the proposed branch line directional coupler. Measurement of the 10 dB branch line directional coupler shows that the return loss is higher than 30 dB over 10 % bandwidth and the isolation is 35 dB or better over 8 % bandwidth.

Novel Lumped Element Backward Directional Couplers Based on the Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기)

  • 박준석;송택영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1036-1043
    • /
    • 2003
  • In this paper, novel lumped equivalent circuits for a conventional parallel directional coupler are proposed. This novel equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3 dB and 10 dB lumped element directional couplers at the center frequency of 100 MHz and 2 GHz, respectively a chip type directional coupler has been designed with multilayer configurations by employing commercial EM simulator. Designed chip-type directional couplers have a 3 dB-coupling value at the center frequency of 2 GHz and fabricated lumped directional coupler on fr4 organic substrate has a 3 dB, 10 dB-coupling values at the center frequency of 100 MHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper. Furthermore, in order to adapt to multi-layer process such as Low Temperature Cofired Ceramic (LTCC), chip-type lumped element couplers have been designed by using this method.