• 제목/요약/키워드: parallel cables

검색결과 50건 처리시간 0.031초

Implementation of a Viterbi Decoder Operated in the 1000Base-T (1000Base-T에서 동작하는 Viterbi Decoder 구현)

  • Jung, Jae-woo;Chung, Hae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.41-44
    • /
    • 2013
  • As appearance of high-quality service such as UDTV application, high-speed and high-capacity communication services are required. For this, communication systems increase the data processing speed and use various error correction techniques. In this paper, we implement the Viterbi decoder applied in 1000BASE-T with 4 pairs UTP cable. The minimum operating speed of the Viterbi decoer should be more than 125 MHz because 125 MHz PAM-5 signal is transmitted on each pair of cables in 1000BASE-T. To do this, we implement the decoder by using the pipeline and parallel processing and verify the operation with 125 MHz by using a logic analyzer. Finally, we will show that the decoder recovers the original data for the added random error data.

  • PDF

Improved Reactive Power Sharing for Parallel-operated Inverters in Islanded Microgrids

  • Issa, Walid;Sharkh, Suleiman;Mallick, Tapas;Abusara, Mohammad
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1152-1162
    • /
    • 2016
  • The unequal impedances of the interconnecting cables between paralleled inverters in the island mode of microgrids cause inaccurate reactive power sharing when the traditional droop control is used. Many studies in the literature adopt low speed communications between the inverters and the central control unit to overcome this problem. However, the losses of this communication link can be very detrimental to the performance of the controller. This paper proposes an improved reactive power-sharing control method. It employs infrequent measurements of the voltage at the point of common coupling (PCC) to estimate the output impedance between the inverters and the PCC and then readjust the voltage droop controller gains accordingly. The controller then reverts to being a traditional droop controller using the newly calculated gains. This increases the immunity of the controller against any losses in the communication links between the central control unit and the inverters. The capability of the proposed control method has been demonstrated by simulation and experimental results using a laboratory scale microgrid.

Magnetization Loss Characteristics of a Stacked Bi-2223 Conductor (적층 Bi-2223도체의 자화손실 특성)

  • Ryu, Gyeong-U;Han, Hyeong-Ju;Choe, Byeong-Ju;Na, Wan-Su;Ju, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제51권10호
    • /
    • pp.554-559
    • /
    • 2002
  • The at loss is an important issue in the design of superconducting cables and transformers. In these devices the Bi-2222 tapes are usually placed face-to-face. In such arrangements ac loss is influenced by adjacent tapes. The effect is investigated by measuring the magnetization loss in the stacked conductor, which consists of various numbers of Bi-2223 tapes. For the single tape the magnetization loss in perpendicular field is larger than that in parallel field by about a factor 10. This agrees well with the prediction for hysteresis loss in slab and strip models. For the stacked conductor in perpendicular field the magnetization loss at low fields is greatly decreased, compared to the loss of the single tape. However the loss at high fields is nearly unaffected. This behavior is well described by the slab model.

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권4A호
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

The Controller Design of a 2.4MJ Pulse Power Supply for a Electro-Thermal-Chemical Gun (전열화학포용 2.4MJ 펄스 파워 전원의 제어기 설계)

  • Kim, Jong-Soo;Jin, Y.S.;Lee, H.S.;Rim, Geun-Hie;Kim, J.S.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제55권12호
    • /
    • pp.511-517
    • /
    • 2006
  • The key issues in high power, high energy applications such as electromagnetic launchers include safety, reliability, flexibility, efficiency, compactness, and cost. To explore some of the issues, a control scheme for a large current wave-forming was designed, built and experimentally verified using a 2.4MJ pulse power system (PPS). The PPS was made up of eight capacitors bank unit, each containing six capacitors connected in parallel. Therefore there were 48 capacitors in total, with ratings of 22kV and 50kJ each. Each unit is charged through a charging switch that is operated by air pressure. For discharging each unit has a triggered vacuum switch (TVS) with ratings of 200kA and 250kV. Hence, flexibility of a large current wave-forming can be obtained by controlling the charging voltage and the discharging times. The whole control system includes a personal computer(PC), RS232 and RS485 pseudo converter, electric/optical signal converters and eight 80C196KC micro-controller based capacitor-bank module(CBM) controllers. Hence, the PC based controller can set the capacitor charging voltages and the TVS trigger timings of each CBM controller for the current wave-forming. It also monitors and records the system status data. We illustrated that our control scheme was able to generate the large current pulse flexibly and safely by experiments. The our control scheme minimize the use of optical cables without reducing EMI noise immunity and reliability, this is resulting in cost reduction. Also, the reliability was increased by isolating ground doubly, it reduced drastically the interference of the large voltage pulse induced by the large current pulse. This paper contains the complete control scheme and details of each subsystem unit.

Fire Cause Reasoning of Self-regulating Heating Cable by a Fire Investigation Applying the Scientific Method and Fault Tree Analysis (과학적 방법을 적용한 화재조사와 결함수 분석을 이용한 정온전선의 발화원인 추론)

  • Kim, Doo-Hyun;Lee, Heung-Su
    • Fire Science and Engineering
    • /
    • 제30권4호
    • /
    • pp.73-81
    • /
    • 2016
  • A self-regulating heating cable is an electrical heating element by flowing an electric current between parallel conductors filled with an extruded semi-conductive polymer. Self-regulating heating cables are used mainly for frost protection purposes because the construction is convenient and the price is low. On the other hand, structural problems with imperfections of the insulation can cause a fire despite their usefulness. This paper deduced a direct method to derive the cause by investigating the scene of a fire due to a self-regulating heating cable and analyzed the basic problem using fault tree analysis. In this paper, the actual fire scene was a cold storage warehouse, and fire investigation was conducted. After investigating the fire scene and fault tree analysis, the cause of the fire could be attributed to dielectric breakdown of the self-regulating heating cable. This paper could be utilized in the fire safety activities and similar fire investigations.

A New Concept of Magnetic Cable for Safe Mobile Power Delivery (안전한 전력전달을 위한 새로운 형태의 자기케이블)

  • Lee, Woo-Young;Huh, Jin;Choi, Su-Yong;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.542-553
    • /
    • 2011
  • A magnetic cable that can safely deliver high frequency AC electric power in flammable or sensitive workplaces by preventing from arcs and electric shocks is firstly proposed in this paper. Several new magnetic cable structures with magnetic shields, which are composed of such cancel coil, cancel copper plate, and cancel copper pipe, were compactly implemented by considering and analyzing fringe field and thus the parallel leakage flux is drastically reduced. The output power and efficiency of a prototype magnetic cable with 1.5 m length and 5 cm gap were measured as 353.8W and 68%, where the source current and switching frequency were 10 $A_{rms}$ and 20 kHz, respectively. The proposed magnetic cables are fully analyzed and verified by finite-element method (FEM) simulations and experiments. The results are in a good agreement.

Design and Operation Characteristics of 2.4MJ Pulse Power System for Electrothermal-Chemical(ETC) Propulsion(I) (전열화학추진용 2.4MJ 펄스파워전원의 설계와 동작특성(I))

  • Jin, Y.S.;Lee, H.S.;Kim, J.S.;Cho, J.H.;Lim, G.H.;Kim, J.S.;Chu, J.H.;Jung, J.W.;Hwang, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1868-1870
    • /
    • 2000
  • As a drive for an ETC (Electro-thermal Chemical) launcher, a large pulse power system of a 2.4MJ energy storage was designed, constructed and tested. The overall power system consists of eight capacitive 300kJ energy storage banks. In this paper we describe the design features, setup and operation test result of the 300kJ pulsed power module. Each capacitor bank of the 300kJ module consists of six 22kV 50kJ capacitors. A triggered vacuum switch (TVS-43) was adopted as the main pulse switch. Crowbar diode circuits, variable multi-tap inductors and energy dumping systems are connected to each high power capacitor bank via bus-bars and coaxial cables. A parallel crowbar diode stack is fabricated in coaxial structure with two series 13.5kV, 60kA avalanche diodes. The main design parameters of the 300kJ module are a maximum current of 180kA and a pulse width of 0.5 - 3ms. The electrical performances of each component and current output variations into resistive loads have been investigated.

  • PDF

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.