• Title/Summary/Keyword: parallel HTS tapes

Search Result 26, Processing Time 0.026 seconds

Current sharing measurement using non-contact method for parallel HTS tapes conductor according to tape array geometry (병렬도체에서 선재의 배열형상에 따른 비접촉식 전류분류 측정)

  • Byun, S.;Park, M.;Choi, S.;Park, S.;Lee, S.;Kim, W.;Lee, J.;Choi, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.32-36
    • /
    • 2008
  • An HTS conductor with parallel HTS tapes is essential for a large power HTS device to flow a large current. One of the most important factor for this conductor is a current distribution. Non-uniform current distribution in parallel tapes makes the critical current of the conductor low and the AC losses high. In this paper we proposed a non-contact method which measured each current in parallel tapes by using an array of Hall sensors. A matrix can be derived from this array for calibration. The current distributions of 4 and 6 parallel tapes were measured.

A Joining Method between HTS Double Pancake Coils (고온초전도 더블 팬케이크 코일들 사이의 접합 방법)

  • Sohn, Myung-Hwan;Sim, Ki-Deok;Kim, Seok-Ho;Kim, Hae-Jong;Bae, Joon-Han;Lee, Eon-Young;Min, Chi-Hyun;Seong, Ki-Chul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.633-639
    • /
    • 2006
  • High temperature superconductor (HTS) winding coil is one of the key component in superconducting device fabrication. Double-pancake style coils are widely used for such application. High resistance between pancake coils greatly affects the machine design, operating condition and thus the stability. In order to reduce such resistance, experimentalists are looking for efficient and damage free coil connecting methods. In this respect, here we proposed parallel joining method to connect the coils. This is to do crossly joining with HTS tapes on two parallel HTS tapes. Joint samples between two parallel HTS tapes were prepared by using HTS tapes and current-voltage (I-V) characteristic curves were investigated at liquid nitrogen temperature i.e., 77.3 K. A 20 cm length joint connected between two parallel HTS tapes shows $32.5n{\Omega}$, for currents up to 250 A. A small HTS magnet, having two double pancake sub-coils connected together through new parallel joint method was fabricated and their current-voltage (I-V) characteristic curve was investigated. At 77.3K, critical current(Ic) of 97 A and resistance of $55n{\Omega}$ for currents upto 130 A were measured. At operating current 86 A lower than Ic, Joule heats generated in whole magnet and at joint region between sub-coils were 226 mW and 0.4 mW, respectively. Low Joule heat generation suggests that this joining method may be used to fabricate HTS magnet or windings.

Critical current characteristic of various 2G HTS multi-stacked tapes depending on the low external magnetic field

  • Kim, J.;Lee, W.S.;Jin, H.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • 2G HTS tapes are widely used for various electric machines. In addition, stacked or parallel connected HTS tapes are essentially used to raise transport current level for large capacity electric machines. Therefore, critical current characteristic of stacked tapes need to be studied. Recently developed 2G HTS tapes are fabricated with various defects doping so that tapes possess pinning center to improve the critical current characteristic. During this process, the critical current is determined minimum value in not perpendicular magnetic field but a specific magnetic field angle according to the reported research. However, the effects of magnetic field angle to critical current of multi-stacked 2G HTS tapes have not been examined. In this paper, field coil which is a race-track coil wound by using an HTS tape with iron-core was fabricated to apply angle adjustable magnetic field to the 2G HTS tape samples. We measured critical current of single and multi-stacked two tapes that have different characteristic depending on various magnetic field angle and magnitude in liquid nitrogen environment. Furthermore, results of single and multi-stacked tapes were compared and analyzed.

Optimization of wire construction from several 2G HTS tapes

  • Kumarov, D.R.;Sotnikov, D.;Scherbakov, V.I.;Mankevich, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.24-28
    • /
    • 2019
  • Despite the second generation HTS tapes (2G HTS tape) have limits in critical current value, scientific and electric devices require more current density day after day. These requirements are realized by using different superconducting wires that consist of 2G HTS tapes designed in various combinations. Authors of this paper have developed the numerical model for estimation of total critical current in the superconducting wire and critical current in each 2G HTS tape placed in this superconducting wire. The current drop in six 2G HTS tapes having different constructions was analyzed. The result of this research is the decrease of critical current up to 25 % for the stack of tapes and up to 5 % for the parallel tapes in the same plane. In addition, what was also made is the estimation of the current distribution by length for six 25 m 2G HTS tapes in different constructions and determination of current deviation by length of the wire.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

Design and Fabrication of Parallel Wounded HTS Transformer Windings with Transpositions (전위를 고려한 고온초전도 변압기용 병렬권선의 설계 및 제작)

  • 김우석;김성훈;최경달;주형길;홍계원;한진호;박정호;송희석;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.203-205
    • /
    • 2003
  • Parallel wounded windings with BSCCO-2223 HTS tape for 1MVA HTS transformer were designed and prototype windings were fabricated in double pancake type. The parallel HTS tapes were transposed between the pancakes via non-superconducting joints because it is hard to make transpositions inside the pancake windings. The prototypes were wound using copper tape with same size as BSCCO-2223 tape, which will be used in 1MVA HTS transformer. The windings will be used for high voltage test and insulation test of the transformer Parallel HTS windings are going to be fabricated and tested for current distribution in near future.

  • PDF

Design of a 1 MVA HTS Transformer with Double Pancake Windings

  • Kim, Woo-Seok;Park, Kyeong-Dal;Joo, Hyeong-Gil;Han, Jin-Ho;Hong, Gye-Won;Park, Jungho;Heesuck Song;Kim, Sung-Hoon;Hahn, Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.48-51
    • /
    • 2003
  • A 1 MVA transformer with BSCCO-2223 high Tc superconducting (HTS) tapes was designed. The rated voltages of each sides of the transformer are 22.0 kV and 6.6 kV respectively. Double pancake HTS windings, which have advantages of insulations and distribution of high voltage, were adopted. Four HTS tapes were wound in parallel fer the windings of low voltage side. Each winding was composed of several double pancake windings made of four parallel conductors were transposed in order to distribute the currents equally in each conductor. A core of the transformer was designed as a shell type core made of laminated silicon steel plate and the core is separated with the windings by a cryostat with a room temperature bore. The operating temperature of HTS windings will be 65K with liquid nitrogen, and a cooling system using a cryocooler was proposed and designed conceptually. This HTS transformer is going to be manufactured in near future based on the design parameters presented in this paper.

Conceptual Design and 3-D Electromagnetic Analysis of 1MVA HTS Transformer (1MVA 고온 초전도 변압기 개념 설계 및 3차원 전자장 해석)

  • 박찬배;김우석;최경달;주형길;홍계원;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • This paper presents conceptual design and 3-D electromagnetic analysis of IMVA transformer with BSCCO-2223 High Tc Superconducting (HTS) tapes. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV, and double pancake windings were adopted. High voltage and Low voltage sides were composed of several double pancake windings. Four HTS tapes were wound in parallel for the windings of low voltage side and were transposed in order to distribute the currents equally in each conductor The transformer core was designed as a shell type core made of laminated silicon steel plates and the core is separated with the windings by a cryostat with Fiberglass Reinforced Plastics(FRP). A sub-cooling system using L$N_2$ were designed to maintain the coolant temperature 65K. Finally perpendicular components of magnetic field applied to tapes were calculated 0.247 in the rated operation using 3-D analysis. A real 1MVA HTS transformer will be manufactured in near future based on the design parameters presented in this paper.

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Characteristics of Multiply Laminated HTS tapes for the Windings of Large Power Superconducting Transformers (대용량 초전도 변압기 권선용 다중선재의 특성)

  • Kim, W.S.;Lee, S.;Hwang, Y.I.;Chang, T.;Lee, H.G.;Hong, G.W.;Choi, K.D.;Hahn, S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1216-1218
    • /
    • 2005
  • A high temperature superconducting power transformer gets its advantages over the conventional ones when the rated capacity of the HTS transformer becomes 30 MVA or more. The standard capacity of the recent 154 kV/ 22.9 kV power transformer is 3 phase 60 MVA in Korea which means that the rated current of the secondary becomes more than 1,500 amps. Considering the current capacities of the HTS wires being developed recently, it is inevitable to use the HTS wires in parallel in order to be applied to the power transformer. But nonuniform distribution of currents and large AC losses are major problems in parallel HTS windings setting aside the difficulties of making parallel windings. To solve these problems, several kinds of multiply laminated HTS wires were fabricated and tested for the application of these multiple wire to an HTS power transformer. Test results were compared with that of each other and the best were selected for the application to an HTS power transformer.

  • PDF