• Title/Summary/Keyword: parabolic tendon profile

Search Result 1, Processing Time 0.014 seconds

Development of Optimum Design Program for PPC Structures using DCOC (이산성 연속형 최적성 규준을 이용한 PPC 구조의 최적설계프로그램 개발)

  • 한상훈;조홍동;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.315-325
    • /
    • 1997
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) and the development of optimum design program for the multispan partially prestressed concrete beams. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non-prestressing steel and formwork is minimized. The design constraints include limits on the maximum deflection, flexural and shear strengths, in addition to ductility requirements, and upper and lower bounds on design variables as stipulated by the design Code. Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables-effective depth, eccentricity of prestressing steel and non-prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. The self-weight of the structure is included in the equilibrium equation of the real system, as is the secondary effect resulting from the prestressing force. An iterative procedure and computer program for updating the design variables are developed. Two numerical examples of multispan PPC beams with rectangular cross-section are solved to show the applicability and efficiency of the DCOC-based technique.

  • PDF