• 제목/요약/키워드: paper-electronics

Search Result 31,433, Processing Time 0.054 seconds

Comparative analysis of the digital circuit designing ability of ChatGPT (ChatGPT을 활용한 디지털회로 설계 능력에 대한 비교 분석)

  • Kihun Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.967-971
    • /
    • 2023
  • Recently, a variety of AI-based platform services are available, and one of them is ChatGPT that processes a large quantity of data in the natural language and generates an answer after self-learning. ChatGPT can perform various tasks including software programming in the IT sector. Particularly, it may help generate a simple program and correct errors using C Language, which is a major programming language. Accordingly, it is expected that ChatGPT is capable of effectively using Verilog HDL, which is a hardware language created in C Language. Verilog HDL synthesis, however, is to generate imperative sentences in a logical circuit form and thus it needs to be verified whether the products are executed properly. In this paper, we aim to select small-scale logical circuits for ease of experimentation and to verify the results of circuits generated by ChatGPT and human-designed circuits. As to experimental environments, Xilinx ISE 14.7 was used for module modeling, and the xc3s1000 FPGA chip was used for module embodiment. Comparative analysis was performed on the use area and processing time of FPGA to compare the performance of ChatGPT products and Verilog HDL products.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.

Modified AWSSDR method for frequency-dependent reverberation time estimation (주파수 대역별 잔향시간 추정을 위한 변형된 AWSSDR 방식)

  • Min Sik Kim;Hyung Soon Kim
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.91-100
    • /
    • 2023
  • Reverberation time (T60) is a typical acoustic parameter that provides information about reverberation. Since the impacts of reverberation vary depending on the frequency bands even in the same space, frequency-dependent (FD) T60, which offers detailed insights into the acoustic environments, can be useful. However, most conventional blind T60 estimation methods, which estimate the T60 from speech signals, focus on fullband T60 estimation, and a few blind FDT60 estimation methods commonly show poor performance in the low-frequency bands. This paper introduces a modified approach based on Attentive pooling based Weighted Sum of Spectral Decay Rates (AWSSDR), previously proposed for blind T60 estimation, by extending its target from fullband T60 to FDT60. The experimental results show that the proposed method outperforms conventional blind FDT60 estimation methods on the acoustic characterization of environments (ACE) challenge evaluation dataset. Notably, it consistently exhibits excellent estimation performance in all frequency bands. This demonstrates that the mechanism of the AWSSDR method is valuable for blind FDT60 estimation because it reflects the FD variations in the impact of reverberation, aggregating information about FDT60 from the speech signal by processing the spectral decay rates associated with the physical properties of reverberation in each frequency band.

Comparison of brain wave values in emotional analysis using video (영상을 이용한 감정분석에서의 뇌파 수치 비교)

  • Jae-Hyun Jo;Sang-Sik Lee;Jee-Hun Jang;Jin-Hyoung Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.519-525
    • /
    • 2023
  • The human brain constantly emits electrical impulses, which is called brain waves, and brain waves can be defined as the electrical activity of the brain generated by the flow of ions generated by the biochemical interaction of brain cells. There is a study that emotion is one of the factors that can cause stress. Brain waves are the most used in the study of emotions. This paper is a study on whether emotions affect stress, and showed two images of fear and joy to four experimenters and divided them into three stages before, during, and after watching. As a measurement tool, brain waves at the positions of Fp1 and Fp2 were measured using the NeuroBrain System, a system that can automate brain wave measurement, analysis, brain wave reinforcement, and suppression training with remote control. After obtaining the brain wave data for each emotion, the average value was calculated and the study was conducted. As for the frequency related to stress, the values of Alpha and SMR, Low Beta, and High Beta were analyzed. Brainwave analysis affects stress depending on the emotional state, and "fear" emotions cause anxiety by raising Beta levels, resulting in higher Mind Stress levels, while "joy" emotions lower Beta levels, resulting in a significant drop in Mind Stress.

Development of a deep learning-based cabbage core region detection and depth classification model (딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발)

  • Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.392-399
    • /
    • 2023
  • This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

A Study on Applying the Nonlinear Regression Schemes to the Low-GloSea6 Weather Prediction Model (Low-GloSea6 기상 예측 모델 기반의 비선형 회귀 기법 적용 연구)

  • Hye-Sung Park;Ye-Rin Cho;Dae-Yeong Shin;Eun-Ok Yun;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.489-498
    • /
    • 2023
  • Advancements in hardware performance and computing technology have facilitated the progress of climate prediction models to address climate change. The Korea Meteorological Administration employs the GloSea6 model with supercomputer technology for operational use. Various universities and research institutions utilize the Low-GloSea6 model, a low-resolution coupled model, on small to medium-scale servers for weather research. This paper presents an analysis using Intel VTune Profiler on Low-GloSea6 to facilitate smooth weather research on small to medium-scale servers. The tri_sor_dp_dp function of the atmospheric model, taking 1125.987 seconds of CPU time, is identified as a hotspot. Nonlinear regression models, a machine learning technique, are applied and compared to existing functions conducting numerical operations. The K-Nearest Neighbors regression model exhibits superior performance with MAE of 1.3637e-08 and SMAPE of 123.2707%. Additionally, the Light Gradient Boosting Machine regression model demonstrates the best performance with an RMSE of 2.8453e-08. Therefore, it is confirmed that applying a nonlinear regression model to the tri_sor_dp_dp function during the execution of Low-GloSea6 could be a viable alternative.

An improved technique for hiding confidential data in the LSB of image pixels using quadruple encryption techniques (4중 암호화 기법을 사용하여 기밀 데이터를 이미지 픽셀의 LSB에 은닉하는 개선된 기법)

  • Soo-Mok Jung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • In this paper, we propose a highly secure technique to hide confidential data in image pixels using a quadruple encryption techniques. In the proposed technique, the boundary surface where the image outline exists and the flat surface with little change in pixel values are investigated. At the boundary of the image, in order to preserve the characteristics of the boundary, one bit of confidential data that has been multiply encrypted is spatially encrypted again in the LSB of the pixel located at the boundary to hide the confidential data. At the boundary of an image, in order to preserve the characteristics of the boundary, one bit of confidential data that is multiplely encrypted is hidden in the LSB of the pixel located at the boundary by spatially encrypting it. In pixels that are not on the border of the image but on a flat surface with little change in pixel value, 2-bit confidential data that is multiply encrypted is hidden in the lower 2 bits of the pixel using location-based encryption and spatial encryption techniques. When applying the proposed technique to hide confidential data, the image quality of the stego-image is up to 49.64dB, and the amount of confidential data hidden increases by up to 92.2% compared to the existing LSB method. Without an encryption key, the encrypted confidential data hidden in the stego-image cannot be extracted, and even if extracted, it cannot be decrypted, so the security of the confidential data hidden in the stego-image is maintained very strongly. The proposed technique can be effectively used to hide copyright information in general commercial images such as webtoons that do not require the use of reversible data hiding techniques.

Smartphone-Attachable Vascular Compliance Monitoring Module (스마트폰 탈착형 혈관 탄성 모니터링 모듈)

  • Se-Hwan Yang;Ji-Yong Um
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.221-227
    • /
    • 2024
  • This paper presents a smartphone-attachable vascular compliance monitoring module. The proposed sensor module measures photoplethysmogram (PPG) and reconstructs an accelerated PPG waveform. The feature points are extracted from the accelerated PPG waves, and vascular compliance is estimated using these extracted features. The module is powered via the smartphone's USB terminal and transmits the acquired waveforms along with vascular compliance values through Bluetooth. The transmitted waveforms and vascular compliance value are displayed through the smartphone application. This work proposes an assessment method for consistency of PPG instrumentation, and it was implemented in a processor of sensor module. The proposed sensor module can be easily attached to smartphone that does not support PPG instrumentation, providing simple measurment and numerical analysis of vascular compliance. To verify the performance of the implemented sensor module, we acquired vascular compliance and pulse pressure data from 29 subjects. Pulse pressure, which serves as a representative indicator of vascular compliance, was obtained using a commercial blood pressure monitor. The analysis results showed that the Pearson coefficient between vascular compliance and pulse pressure was 0.778, confirming a relatively high correlation between two metrics.