• Title/Summary/Keyword: paper-electronics

Search Result 31,367, Processing Time 0.058 seconds

Development of a deep learning-based cabbage core region detection and depth classification model (딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발)

  • Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.392-399
    • /
    • 2023
  • This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

A Study on Applying the Nonlinear Regression Schemes to the Low-GloSea6 Weather Prediction Model (Low-GloSea6 기상 예측 모델 기반의 비선형 회귀 기법 적용 연구)

  • Hye-Sung Park;Ye-Rin Cho;Dae-Yeong Shin;Eun-Ok Yun;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.489-498
    • /
    • 2023
  • Advancements in hardware performance and computing technology have facilitated the progress of climate prediction models to address climate change. The Korea Meteorological Administration employs the GloSea6 model with supercomputer technology for operational use. Various universities and research institutions utilize the Low-GloSea6 model, a low-resolution coupled model, on small to medium-scale servers for weather research. This paper presents an analysis using Intel VTune Profiler on Low-GloSea6 to facilitate smooth weather research on small to medium-scale servers. The tri_sor_dp_dp function of the atmospheric model, taking 1125.987 seconds of CPU time, is identified as a hotspot. Nonlinear regression models, a machine learning technique, are applied and compared to existing functions conducting numerical operations. The K-Nearest Neighbors regression model exhibits superior performance with MAE of 1.3637e-08 and SMAPE of 123.2707%. Additionally, the Light Gradient Boosting Machine regression model demonstrates the best performance with an RMSE of 2.8453e-08. Therefore, it is confirmed that applying a nonlinear regression model to the tri_sor_dp_dp function during the execution of Low-GloSea6 could be a viable alternative.

Smartphone-Attachable Vascular Compliance Monitoring Module (스마트폰 탈착형 혈관 탄성 모니터링 모듈)

  • Se-Hwan Yang;Ji-Yong Um
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.221-227
    • /
    • 2024
  • This paper presents a smartphone-attachable vascular compliance monitoring module. The proposed sensor module measures photoplethysmogram (PPG) and reconstructs an accelerated PPG waveform. The feature points are extracted from the accelerated PPG waves, and vascular compliance is estimated using these extracted features. The module is powered via the smartphone's USB terminal and transmits the acquired waveforms along with vascular compliance values through Bluetooth. The transmitted waveforms and vascular compliance value are displayed through the smartphone application. This work proposes an assessment method for consistency of PPG instrumentation, and it was implemented in a processor of sensor module. The proposed sensor module can be easily attached to smartphone that does not support PPG instrumentation, providing simple measurment and numerical analysis of vascular compliance. To verify the performance of the implemented sensor module, we acquired vascular compliance and pulse pressure data from 29 subjects. Pulse pressure, which serves as a representative indicator of vascular compliance, was obtained using a commercial blood pressure monitor. The analysis results showed that the Pearson coefficient between vascular compliance and pulse pressure was 0.778, confirming a relatively high correlation between two metrics.

Smart window coloring control automation system based on image analysis using a Raspberry Pi camera (라즈베리파이 카메라를 활용한 이미지 분석 기반 스마트 윈도우 착색 조절 자동화 시스템)

  • Min-Sang Kim;Hyeon-Sik Ahn;Seong-Min Lim;Eun-Jeong Jang;Na-Kyung Lee;Jun-Hyeok Heo;In-Gu Kang;Ji-Hyeon Kwon;Jun-Young Lee;Ha-Young Kim;Dong-Su Kim;Jong-Ho Yoon;Yoonseuk Choi
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, we propose an automated system. It utilizes a Raspberry Pi camera and a function generator to analyze luminance in an image. Then, it applies voltage based on this analysis to control light transmission through coloring smart windows. The existing luminance meters used to measure luminance are expensive and require unnecessary movement from the user, making them difficult to use in real life. However, after taking a photography, luminance analysis in the image using the Python Open Source Computer Vision Library (OpenCV) is inexpensive and portable, so it can be easily applied in real life. This system was used in an environment where smart windows were applied to detect the luminance of windows. Based on the brightness of the image, the coloring of the smart window is adjusted to reduce the brightness of the window, allowing occupants to create a comfortable viewing environment.

An improved technique for hiding confidential data in the LSB of image pixels using quadruple encryption techniques (4중 암호화 기법을 사용하여 기밀 데이터를 이미지 픽셀의 LSB에 은닉하는 개선된 기법)

  • Soo-Mok Jung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • In this paper, we propose a highly secure technique to hide confidential data in image pixels using a quadruple encryption techniques. In the proposed technique, the boundary surface where the image outline exists and the flat surface with little change in pixel values are investigated. At the boundary of the image, in order to preserve the characteristics of the boundary, one bit of confidential data that has been multiply encrypted is spatially encrypted again in the LSB of the pixel located at the boundary to hide the confidential data. At the boundary of an image, in order to preserve the characteristics of the boundary, one bit of confidential data that is multiplely encrypted is hidden in the LSB of the pixel located at the boundary by spatially encrypting it. In pixels that are not on the border of the image but on a flat surface with little change in pixel value, 2-bit confidential data that is multiply encrypted is hidden in the lower 2 bits of the pixel using location-based encryption and spatial encryption techniques. When applying the proposed technique to hide confidential data, the image quality of the stego-image is up to 49.64dB, and the amount of confidential data hidden increases by up to 92.2% compared to the existing LSB method. Without an encryption key, the encrypted confidential data hidden in the stego-image cannot be extracted, and even if extracted, it cannot be decrypted, so the security of the confidential data hidden in the stego-image is maintained very strongly. The proposed technique can be effectively used to hide copyright information in general commercial images such as webtoons that do not require the use of reversible data hiding techniques.

Automation of Online to Offline Stores: Extremely Small Depth-Yolov8 and Feature-Based Product Recognition (Online to Offline 상점의 자동화 : 초소형 깊이의 Yolov8과 특징점 기반의 상품 인식)

  • Jongwook Si;Daemin Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • The rapid advancement of digital technology and the COVID-19 pandemic have significantly accelerated the growth of online commerce, highlighting the need for support mechanisms that enable small business owners to effectively respond to these market changes. In response, this paper presents a foundational technology leveraging the Online to Offline (O2O) strategy to automatically capture products displayed on retail shelves and utilize these images to create virtual stores. The essence of this research lies in precisely identifying and recognizing the location and names of displayed products, for which a single-class-targeted, lightweight model based on YOLOv8, named ESD-YOLOv8, is proposed. The detected products are identified by their names through feature-point-based technology, equipped with the capability to swiftly update the system by simply adding photos of new products. Through experiments, product name recognition demonstrated an accuracy of 74.0%, and position detection achieved a performance with an F2-Score of 92.8% using only 0.3M parameters. These results confirm that the proposed method possesses high performance and optimized efficiency.

Performance Analysis of Top-K High Utility Pattern Mining Methods (상위 K 하이 유틸리티 패턴 마이닝 기법 성능분석)

  • Ryang, Heungmo;Yun, Unil;Kim, Chulhong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.89-95
    • /
    • 2015
  • Traditional frequent pattern mining discovers valid patterns with no smaller frequency than a user-defined minimum threshold from databases. In this framework, an enormous number of patterns may be extracted by a too low threshold, which makes result analysis difficult, and a too high one may generate no valid pattern. Setting an appropriate threshold is not an easy task since it requires the prior knowledge for its domain. Therefore, a pattern mining approach that is not based on the domain knowledge became needed due to inability of the framework to predict and control mining results precisely according to the given threshold. Top-k frequent pattern mining was proposed to solve the problem, and it mines top-k important patterns without any threshold setting. Through this method, users can find patterns from ones with the highest frequency to ones with the k-th highest frequency regardless of databases. In this paper, we provide knowledge both on frequent and top-k pattern mining. Although top-k frequent pattern mining extracts top-k significant patterns without the setting, it cannot consider both item quantities in transactions and relative importance of items in databases, and this is why the method cannot meet requirements of many real-world applications. That is, patterns with low frequency can be meaningful, and vice versa, in the applications. High utility pattern mining was proposed to reflect the characteristics of non-binary databases and requires a minimum threshold. Recently, top-k high utility pattern mining has been developed, through which users can mine the desired number of high utility patterns without the prior knowledge. In this paper, we analyze two algorithms related to top-k high utility pattern mining in detail. We also conduct various experiments for the algorithms on real datasets and study improvement point and development direction of top-k high utility pattern mining through performance analysis with respect to the experimental results.

Study on Strain Measurement of Agricultural Machine Elements Using Microcomputer (Microcomputer를 이용(利用)한 농업기계요소(農業機械要素)의 Strain 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Kee Dae;Kim, Tae Kyun;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 1981
  • To design more efficient agricultural machinery, the accurately measuring system among many other factors is essential. A light-beam oscillographic recorder is generally used in measuring dynamic strain but it is not compatible with the extremely high speed measuring system such as 1,000 m/s, also is susceptable to damage due to vibration while using the system in field. The recorder used light sensitive paper for strip chart recording. The reading and analysis of data from the strip charts is very cumbersome, errorneous and time consuming. A microcomputer was interfaced with A/D converter, microcomputer program was developed for measuring, system calibration was done and the strain generated from a cantilever beam vibrator was measured. The results are summarized as follows. 1. Microcomputer program was developed to perform strain measuring of agricultural machine elements and could be controled freely the measuring intervals, no. of channels and no. of data. The maximum measuring speed was $62{\mu}s$. 2. Calibration the system was performed with triangle wave generated from a function generator and checked by an oscilloscope. The sampled data were processed using HP 3000 minicomputer of Chungnam National University computer center the graphical results were triangle same as input wave and so the system have been out of phase distorsion and amplitude distorsion. 3. The strain generated from a cantilever beam vibrator which has free vibration period of 0.019 second were measured by the system controlled to have l.0 ms of time interval and its computer output showing vibration curve which is well filted to theoretical value. 4. Using microcomputer on measuring the strain of agricultural machine elements could not only save analyzing time and recording papers but also get excellent adaptation to field experiment, especially in measurement requiring high speed and good precision.

  • PDF