• Title/Summary/Keyword: paper sludge ash

Search Result 64, Processing Time 0.022 seconds

Pyrolysis Characteristics of Sludge Discharged from Paper Mill Process (제지공정에서 발생하는 슬러지의 열분해 특성)

  • Ko, Jae-Churl;Kim, Seung-Ho;Park, Young-Koo;Jeon, Jea-Yeoul;Kim, Jin-Ho;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • This research was conducted to evaluate pyrolysis characteristics of the sludge discharged from paper mill process with sintering temperature. The sludge was composed of 70.72% of moisture, 9.52% of volatile solids, and 19.76% of ash, respectively. The sludge contained high 66.40% of $Fe_2O_3$ and CaO(15.80%), $Al_2O_3$(9.42%), and $SO_3$(3.75%) components, and minor $SiO_2$, $Na_2O$, and $Cr_2O_3$ were also contained in it. The other components except $Fe_2O_3$ and $Cr_2O_3$ were slightly decreased with increase of sintering temperature. Specific surface area of the sludge before sintering was $130m^2/g$ and ones after sintering at $400^{\circ}C$ and $700^{\circ}C$ were $114m^2/g$ and $33m^2/g$ respectively. Specific surface area of sludge was decreased with increase of sintering temperature. From the result of TG-DTA, it was shown that weight of the sludge was decreased by moisture and organic loss until $600^{\circ}C$ and decreased by volatilization of metal components and additional combustion of carbon until $800^{\circ}C$.

A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete (폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구)

  • 소형석;소승영;소양섭;박종호;탁재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

Properties of the Concrete Bricks and Interlocking Blocks Made with the Industrial By-Product (산업부산물로 제조한 콘크리트 벽돌 및 인터록킹 블록의 특성)

  • 최정호;서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.179-184
    • /
    • 2000
  • The presens study was aimed to investigate the possibility of use of pozzolanic materials such as blast furnace slag, fly ash, paper sludge ash which are produced from industrial wastes, as construction materials. Experiments were undertaken to investigate the properties of concrete bricks and interlocking blocks made with these industrial by-products. As a result, it was found that the concrete bricks and interlocking blocks made with substitute materials have equivalent strength and quality to those of conventional concrete bricks and interlocking blocks made with only cement. Thus, it could be expected that recycling the industrial wastes can reduce manufacturing costs of the cement as well as prevent environmental pollution by the use of the by-products thrown out as wastes to make secondary products of the concrete.

  • PDF

Strength and Leaching Characteristics of Water Sludge-added Lightweight Soil Considering Reinforcing Material and Layer (정수슬러지를 혼합한 경량토의 보강에 따른 강도 및 용출 특성 분석)

  • Yun, Daeho;Lee, Byunghun;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.75-84
    • /
    • 2012
  • In this paper, strength and leaching characteristics of water sludge-added lightweight soils(WALS) considering reinforcing materials(waste fishing net, glue treated waste fishing net and geogrid) and layer(1 or 2 layer) were investigated using unconfined compression test and leaching test. Several specimens of water sludge-added lightweight soil consisted of water sludge, cement, and bottom ash were prepared according to flowability. Reinforcing material added into these specimens were waste fishing net and geogrid. A glue treated waste fishing net was also added in order to increase interlocking between soil mixture and waste fishing net. Strength increased in the order of WALS reinforced by waste fishing net, glue treated waste fishing net, and geogrid. Strength of specimen with double layer-reinforcing material was greater than that of specimen with single layer reinforcing material. Leaching result of WALS was also satisfied with standard of ministry of environment.

The Physico chemical Characteristic of MSW and sludge in west area of Kangwondo (강원도 영서지역 생활폐기물 및 슬러지의 물리·화학적 특성에 관한 연구)

  • Lee, Geon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.112-120
    • /
    • 2004
  • In this study, the physico chemical characteristic of MSW and sludge in west area of Kangwondo was investigated for database, managing the waste and waste treatment facility. The sampling sites were selected as 6 different MSW generation area and 2 sludge generation area. it is necessary to measure the characteristics of MSW to build the data-base. The year of 2000, 197.4ton/day of MSW which was generated in this area. This MSW was composed of 26.6% food wastes, 24.2% of papers, 22.8% of plastics & vinyls, 9.6% of textiles, 3.80% of wood, 2.8% of rubbers & leathers and others, respectively. Most of MSW are composed of food, paper and plastic waste and combustible waste is more than 89%. The generation of papers and vinyls are almost same for different seasons For 3-components of MSW, moisture is 40.2%, combustible component is 52.1% and ash is 7.7% and for 3-components of sludge, moisture is 83.3%, combustible component is 7.7% and ash is 9%. The chemical element has the high order of carbon(51.6%), oxygen(38.6%), hydrogen(7%) on the dry basis of wastes. And the high heating value of MSW is 4989.4 Kcal/kg sludge is 4428.04 Kcal/kg and low heating value of the MSW which is measured by calorimeter is 2032.88kcal/kg. From the leaching test of wastes, there is no heavy metals.

  • PDF

Production of Concentrated Magnesium Solution from Seawater Using Industrial By-products (산업부산물을 이용한 해수로부터 고농도 마그네슘 용액의 제조)

  • Cho, Taeyeon;Kim, Myoung-Jin
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.63-73
    • /
    • 2016
  • With the purpose of concentrating the magnesium from seawater, in this study, we have conducted experiments to precipitate the magnesium using three precipitants (NaOH, cement kiln dust, and paper sludge ash), and then extract it using sulfuric acid. Results show that the precipitation and extraction performance does not depend so significantly on the kind of precipitant: for all the precipitants used, the precipitation efficiency is measured almost 100% and the extraction efficiency is in the short range of 77 - 89%. The magnesium concentration in the extract is measured 4975 - 5775 mg/L, implying that the magnesium in seawater should be 3.8 - 4.4 times concentrated through the precipitation and extraction reactions. The reaction efficiency of the industrial by-product used as a precipitant in this study is almost 100% similar to those of the other existing expensive precipitants.

Characteristics of Sintered Bodies Made from the System of Paper Sludge Ash - Fly Ash - Clay (종이재-석탄회-점토계 소지를 이용한 소결체의 특성 연구)

  • Hong, Jin-Ok;Kang, Seung-Gu;Lee, Ki-Gang;Kim, Yoo-Taek;Kim, Young-Jin;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.908-913
    • /
    • 2001
  • Paper sludge Ash (PA) and Fly Ash (FA) wastes are usually land-filled for reclamation or substituted for cements as a resource. It could also offer some advantages when they are substituted for clay to preserve the environment. To recycle those wastes, the sintered specimen made of PA-FA-Clay system were examined to find the microstructure and physical properties. The ratio of clay to wastes was fixed as 30:70 by wt%, while PA to FA within waste portion were varied in the range of $1:6{\sim}7:0$. Those specimens were fired in $1150{\sim}1350^{\circ}C$. It was found that the relative density of sintered specimen was increased with amount of PA added at low sintering temperature (i.e, $1150{\sim}1200^{\circ}C$). This is due to increased amount of liquid during sintering. It is shown, however that at high sintering temperature ($1250{\sim}1350^{\circ}C$), the relative density of specimens was decreased with amount of PA added. This is because of overfiring phenomenon which may be able to induce an inhomogeneous microstructure and increased porosity. The mechanical properties of sintered specimen were depended upon the homogeneity of microstructure in accordance with SEM (Scanning Electron Microscopy) and pore size distribution analysis. For example, the compressive strength of 10PA-60FA-30Clay specimen sintered at $1225^{\circ}C$ was twice higher than that of 70PA-30Clay specimen even thought the relative density of those specimen was similar. This decreased strength of 70PA-30Clay specimen appears to be an inhomogeneity of microstructure due to overfiring.

  • PDF

Studies on the High Strength Cement Hardened Body Blended by Industrial By-Products (산업 폐부산물을 혼합재로한 고강도 시멘트 경화체의 제조 및 특성분석)

  • 연영훈;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1507-1512
    • /
    • 1994
  • High strength cement hardened body was prepared by ordinary portland cement, silica-fume, super-plasticizer and the industrial by-product powder such as tailing, paper sludge ash and granulated slag. These raw materials were mixed and formed with w/c=0.18. The cement hardened body is cured in the autoclave at 18$0^{\circ}C$, 10atm. These admixtures made the compressive strength of all specimens develope by 170~230%. The highest compressive strength could be obtained by 236 MPa when mix composition was 14 wt% of silica-fume and 26 wt% of granulated slag. The compressive strength increased with decreasing the average pore size and the amount of the poe over the size of 50 nm by which the appearance of high compressive strength of the cement hardened body were mainly influenced. In the result, the hydration products were C-S-H, tobermorite and ettringite and it was realized that the reason why the cement hardened body became dense and revealed the higher strength was that those hydrates were formed inside of the pore and filled in it and the unhydrated materials played the role of an inner-filler.

  • PDF

Co-incineration Characteristics of Sewage Sludge and Industrial Waste Using the Rotary Kiln Incinerator (로타리킬른 소각로를 이용한 하수슬러지와 사업장폐기물의 혼합소각 특성)

  • Yang, Dong-Jib;Ko, Jae-Cheol;Kim, Jeong-Keun;Park, Hui-Jae;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • This research were performed to evaluate co-incineration characteristics of sewage sludge and industrial waste in rotary kiln incinerator, and provide the fundamental data. Plastic portion (42.55%) in this industrial waste showed over 3 times higher than that (11.92%) of paper. Korean proximate analysis of the waste mixed with sewage sludge and industrial waste (3 : 7, volumetric basis) showed 16.3% of moisture, 70.5% of volatile solids, and 13.2% of ash, respectively. Low heating value of the mixed waste was 4,513kcal/kg. So it was thought that the mixed waste of sewage sludge and industrial waste (containing 43% of plastics and 12% papers) has enough heating value for co-incineration. The incineration of mixed waste showed the lowest SOx and NOx concentrations at $700^{\circ}C$. However, the operation at $950^{\circ}C$ was feasible in considering dioxin and the other hazardous gases. It was concluded that use of $Ca(OH)_2$ should be under investigation for the operation at $950^{\circ}C$.

The Composition and Physico-chemical Characteristics of Municipal Solid Waste in National park area of Kyungnam-do (경남국립공원지역 폐기물의 성상 및 물리·화학적 특성연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.138-147
    • /
    • 2006
  • In this study, the composition and physico-chemical characteristics of municipal solid waste (MWS) which was treated in national park area kyungnam-do landfill were investigated. It is necessary to measure the characteristics of MSW and sludge to build a waste treatment facility, the data-base and total managing of the landfill. This MSW was composed of 34.62% of food wastes, 36.05% of papers, 15.37% of plastics & vinyls, 2.28% of textiles, 3.33% of wood, 0.49% of rubber & leathers and others, respectively. Most of MSW are composed of food, paper and plastic waste and more than 90% was combustible waste. For three components, moisture is 29.84%, combustible component is 62.30% and ash is 7.86%. The chemical element has the high order of carbon, oxygen, hydrogen on the dry basis of wastes. Also, the low heating value of the MSW which is measured by calorimeter is calculated as 2377.8kcal/kg. low heating value of the sludge is calculated as 338.06kcal/kg.

  • PDF