• 제목/요약/키워드: paper fiber

검색결과 3,670건 처리시간 0.028초

최신 현미경을 이용한 섬유 및 종이의 성질 분석(제1보)-Confocal Laser Scanning Microscope를 이용한 섬유 밑 종이의 성질 분석- (Use of modern microscopes in Analyzing fiber and Paper Properties( I )-Use of CLSM in Analyzing Fiber and Paper Properties-)

  • 김철환
    • 펄프종이기술
    • /
    • 제30권1호
    • /
    • pp.7-17
    • /
    • 1998
  • With the advent of CLSM in the end of 1980s, it has been applied to the field of pulp and paper science in various ways. This study showed the potentials of CLSM In analyzing a change of pulp fiber and paper properties before and after mechanical treatment. In particular, a quantification of internal fibrillation has been done using cross-sectional images of fibers and image analysis technique, then evaluated the effects of fiber wall delamination on fiber and paper properties. It showed that the delaminated fibers were closely associated to development of the interfiber bonding in a fiber network. The CLSM made it possible to investigate a density profile along the sheet thickness, which was created by some papermaking processes like pressing, drying and calendering. Through the attempt to observe the forming procedure of a fiber network during handsheet making, the CLSM images showed that the pressing stage was considered greatly to contribute to generation of interfiber bonding with removing a free water and partly a bound water between fibers. In addition, the CLSM could be used to illustrate not only a surface profile of paper showing the extent of smoothness or roughness, but also a density profile in a B-direction of the network. Finally it became evident that the CLSM could be used as an excellent tool to predict development in fiber and paper properties before and after mechanical treatment during papermaking processes.

  • PDF

탄소섬유를 이용한 전도성 종이의 제조 및 특성 (Characteristics of Electroconductive Paper Manufactured with Carbon Fiber)

  • 김봉용
    • 펄프종이기술
    • /
    • 제41권3호
    • /
    • pp.29-34
    • /
    • 2009
  • Electroconductive papers were manufactured as handsheet by mixing carbon fiber in LBKP and BCTMP. The electrical conductivity of the paper was improved by increasing carbon fiber content and basis weight. The porosity was increased and tensile strength was decreased by the addition of carbon fiber. Electrical conductivity of carbon fiber and BCTMP-based sheet was much better than those of carbon fiber and LBKP-based one. This result indicated that the electrical conductivity of paper can be affected by the kinds of raw material of wood fibers used.

폐지섬유보강 시멘트 복합체의 최적배합비 도출 (Optimum Mix Design for Waste Newsprint Paper Fiber Reinforced Cement Composites)

  • 원종필;배동인;박찬기;박종영
    • 콘크리트학회논문집
    • /
    • 제13권4호
    • /
    • pp.346-353
    • /
    • 2001
  • 본 연구는 얇은 시멘트판 제품의 보강재로써 건조공정에 의해 생산된 폐지섬유의 최적 배합비를 도출하기 위하여 수행되었다. 이를 위해 순수 목질섬유 대비 폐지섬유의 대체수준을 세분화하여 실험을 실시하였으며, 슬러리-탈수 공법을 사용하여 폐지섬유보강 시멘트 복합체를 제조하였다. 본 연구는 실험적 연구와 반응표면 분석법을 활용한 통계적 분석을 통해 공정인자(가압, 비가압)과 섬유보강재 조건(섬유혼입율, 순수섬유 대체수준)을 최적화하였다. 최적화된 재생 폐지섬유 시멘트 복합체를 기술적으로 분석하였으며, 그 결과, 폐지섬유보강 시멘트 복합체의 성능과 경제적 측면에서 폐지섬유의 재활용이 가능하리라 판단된다.

Quantitative Characterization of Internal Fibrillation of Pulp Fiber

  • Won, Jong-Myoung;Lee, Jae-Hun
    • 펄프종이기술
    • /
    • 제39권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Internal fibrillation of pulp fiber is an important factor affecting paper properties. Internal fibrillation of pulp fiber is usually introduced with several kinds of modifications of fiber by the mechanical treatment such as refining, high shear and/or high consistency mixing, etc. Unfortunately there are no standardized methods that can characterize the extent of internal fibrillation and its contribution on the paper properties. The purpose of this study is to try and find the potential methods that can characterize the internal fibrillation of pulp fiber quantitatively. Softwood bleached kraft pulp was treated with Hobart mixer to introduce the internal fibrillation without the significant fiber damage and external fibrillation. The extent of internal fibrillation was increased with the increase of mechanical treatment consistency. Several fiber properties were measured to find the potential means that could characterize and quantity the internal fibrillation. Laminated area could not be used as a means for quantifying the internal fibrillation because of the effect of swelling and the different internal fibrillation behavior at different mechanical treatment consistency. Micro and macro internal fibrillation models were proposed for describing the different behavior for the mechanical treatment at low and high consistencies of pulp. The Internal fibrillation showed good correlation with swelling of fiber wall. This trend was confirmed through the measurement of wall thickness and/or cross section area of fiber. Therefore the internal fibrillation possibly can be described as the indices indicating the change of wall thickness and/or cross section area.

각종 단섬유펄프를 이용한 화선지 제조 (Manufacture of Hwaseonji(Korean Traditional Paper) Using Various Kinds of Short-Length Fiber Pulps)

  • 강진하;주용찬
    • 펄프종이기술
    • /
    • 제37권2호
    • /
    • pp.78-86
    • /
    • 2005
  • Hwaseonji(Korean traditional paper) used for writing and painting has been made from the mulberry bast-fiber and the short-length fiber pulps, wood pulps. However, besides wood pulps, other short-length fiber pulps also can be used instead of wood pulps. Hence, this research was carried out to make the various Hwaseonjis with the different properties, using the five kinds of short-length fiber pulps respectively. The short-length fiber pulps used in this research were softwood bleached kraft pulp(SwBKP) hardwood bleached kraft pulp(HwBKP), rice-straw bleached sulfite pulp(RsBSP), bamboo bleached kraft pulp(BbBKP) and recycled pulp from vellem paper(RP). And, the mixture ratios of the mulberry bast-fiber pulp and short-length fiber pulps were 100:0, 80:20, 60:40, 40:60 and 20:80. After various Hwaseonjis were made from different mixtures mentioned above with hand-made method, physical properties and chinese ink blot property of each paper were measured. The strengthes were the highest in the Hwaseonji made from the mixture of the mulberry bast-fiber pulp and SwBKP. However, chinese ink blot property and smoothness were better when RsBSP, BbBKP or RP were mixed into the mulberry bast-fiber pulp. As a result, the various kinds of Hwaseonjis which the users can choose based on their needs were made.

다양한 섬유재료를 이용한 화선지의 제조와 그 특성 (Manufacture of Oriental Painting Paper (Hwaseonji) Using Various Kinds of Plant Fibers)

  • 문성필;최영재;강석근
    • 펄프종이기술
    • /
    • 제35권3호
    • /
    • pp.79-84
    • /
    • 2003
  • Oriental painting paper (Hwaseonji) was prepared from various kinds of plant fibers and its physical properties were investigated. The fibers used were classified into three different length of fibers; long fiber (<1.8 mm), medium fiber (1.4-1.8 mm) and short fiber (>1.4 mm). The fibers were mixed in the ratio of 15% long fiber, 25% medium fiber and 60% short fiber. The Hwaseonji prepared from mixing of the bamboo or rice straw pulp as a short fiber with the long and medium fibers showed excellent physical properties with a high smoothness and uniformity of Chinese ink blot. Mixing with LBKP as a short fiber was resulted in low physical properties, smoothness and wide ink blot. The properties of Hwaseonji, such as ink absorption, roughness and smoothness, may be predicted from the correlation of density with Chinese ink blot and smoothness.

화상분석법을 응용한 섬유장 및 섬유 조도 측정법 개발 (A New Method for Measuring Fiber Length and Fiber Coarseness Using Image Analysis Technique)

  • 배진한;김철환;박종열
    • 펄프종이기술
    • /
    • 제34권2호
    • /
    • pp.13-21
    • /
    • 2002
  • A new method for measuring fiber length and fiber coarseness was developed using image analysis technique. Measured fibers were transferred to a glass slide on a filter paper placed on a wire of the laboratory paper machine. After staining the fibers on the slide, mean fiber lengths and coarseness were measured by a commercial image analysis software, named KS400. The resultant data obtained from the image analysis displayed a close correlation with those from FS-200 and also showed excellent reproducibility as well as those from FS-200. The length of synthetic fibers over 10 mm long could be readily measured by this new analysis technique. Finally, a substantial improvement in precision for measuring fiber length and coarseness was made with less operator's effort for a given time.

건조수축 해석을 통한 종이의 벌크 및 강직성 향상 (Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis)

  • 이진호;박종문
    • 펄프종이기술
    • /
    • 제43권4호
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

니딩 처리 시 지료농도에 따른 활엽수표백크라프트펄프의 섬유특성 변화 (Effects of Kneading Concentration on Characteristics of HwBKP Fibers)

  • 서지혜;최경화;조병욱
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.54-59
    • /
    • 2015
  • In this study, effects of kneading concentration on characteristics of hardwood bleached kraft pulp (HwBKP) fibers were elucidated. A laboratory two-shaft kneader was utilized for kneading. Kneading concentration was varied in the range of 15-30% (w/w) and the number of kneading treatment was adjusted between 0 and 6 passes. It was found that kneading concentration influenced fiber characteristics. At 15% of pulp concentration, fiber length slightly increased with increasing the number of kneading passes, while other morphological properties such as fiber width and curl decreased: fiber straightening occurred. In addition, the increase in WRV and the decrease in CSF were the largest at 15% kneading concentration, meanings that fibrillation mainly occurred. In contrast, at higher kneading concentration exceeding 20%, fiber deformation like curl was mainly occurred. Also, at kneading concentration of 20% and 30%, fiber length decreased with the number of kneading passes while other morphological properties such as fiber width, and WRV increased. Severe fiber entanglement was found at 30% kneading, which shall be removed during papermaking.

종이의 물리적 특성에 미치는 섬유의 찌그러짐 특성의 영향에 대한 CLSM 분석 (Analysis of Effects of Fiber's Collapse Index on Physical Properties of Paper Using CLSM)

  • 김서환;박종문;김철환
    • 펄프종이기술
    • /
    • 제31권1호
    • /
    • pp.46-51
    • /
    • 1999
  • The most important effect of refining is believed as the internal fibrillation. The internal fibrillation is the separation of the fiber wall into several lamellae. The internal fibrillation results in fiber swelling as water penetrates the fiber wall. The increase in paper strength as a result of refining was due to delamination which made the fiber more flexible. Pulp fibers are refined to 20, 40, and 70$^{\circ}$SR freeness at Valley beater. Changes of Physical paper properties are analyzed depending on fiber wall thickness and fiber's collapse index at 2.5 and 5.6kg$_f$ refining load. At same $^[\circ}$SR freeness with 2.5kg$_f$ refining load, fiber wall thickness is increased further than at high 5.6kg$_f$ refining load. With higher fiber wall thickness by lower intensity refining load, higher internal fibrillation, flexibility, collapsability of fibers are achieved. Those effects improve WRV, tensile strength, and burst strength. Tear strength shows opposite trend to tensile and burst strength as usual.

  • PDF