• Title/Summary/Keyword: panoramic cross sectional view

Search Result 4, Processing Time 0.018 seconds

Assessment of Cancellous Bone of Mandible by Multifunctional Panoramic X-Ray Machine (다기능 파노라마 방사선촬영장치를 이용한 하악해면골질의 평가)

  • Ko Jae-Kyung;Kim Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.30 no.1
    • /
    • pp.16-22
    • /
    • 2000
  • Purpose : To evaluate the bone densities measured on copper-equivalent image of cross sectional view of mandibular edentulous premolar area obtained by multifuctional panoramic x-ray machine, PM 2002 CC with transversal slicing system. Materials and Methods: Panoramic cross sectional views with 8 mm focal layer of aluminum step and blocks, of hydroxyapatite (RA) step, 6 HA blocks and copper step wedge having 0.03 mm thickness of each step, and of 3 bone blocks cutted by 8 mm thickness mesiodistally and a dry mandible with copper step wedge were taken by using transversal slicing system in PM 2002 Cc. All reference-equivalent images were made and analyzed by NIH image program. Results: The average copper-equivalent value of cancellous bone of bone blocks on the panoramic cross sectional view was 0.026 ± 0.020 mm Cu. The calculated average bone density was 0.38g/cm². There was no significant difference (P>0.1) between the bone densities on intraoral digital view and on the panoramic digital cross sectional view. Conclusion: The copper-equivalent image of panoramic digital cross sectional view obtained by PM 2002 CC with very thin copper step wedge was supposed to be useful to measure the bone density of cancellous bone of mandible at the premolar edentulous area.

  • PDF

A Radiologic Study of the Relationship of the Maxillary Sinus Floor and Apex of the Maxillary Molar (상악동 아래벽과 상악 대구치 치근사이 위치관계에 관한 방사선학적 연구)

  • Yoon Hae-Rym;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.111-126
    • /
    • 1998
  • In this study, radiographic evaluation was made using panoramic radiography and cross-sectional tomography of SCANORA/sup (R)/ in male and female adults in their 20's on the relationship between the maxillary sinus floor and the apex of the maxillary molar, to test the accuracy and effectiveness of the cross-sectional tomography, and to use this information in the assessment of preop. and postop. root canal treatment, apical surgery, extraction and implantology. Forty-one adults with an average age of 24.4 years were studied using panoramic radiography and cross-sectional tomography. In panoramic view and cross-sectional view, the position of the apices of maxillary molars were classified as separated, contacted, or protruded type; the general shape of the maxillary sinus floor was evaluated horizontally and vertically from cross-sectional tomography. The accuracy of each radiography was tested using maxilla from 5 fresh cadavers from the Anatomy Lab at Yonsei University Dental College, and panoramic view and cross-sectional tomography were taken in the same condition as with the patients. The results were as follows: 1. Panoramic view and cross-sectional view were taken in the maxilla specimen, and the actual distance between the maxillary sinus floor and the tooth apices were measured in the specimen; the median values of the distance from the tooth apices to the maxillary sinus floor in the panoramic view, cross-sectional view and in the actual maxilla specimen were 2.83 mm, 4.51mm, and 4.l5mm, respectively. In the cross-sectional view, the measured distance was close to the actual distance but in the panoramic view, the measured distance was far from the actual distance. 2. When the results of the panoramic view and cross-sectional view were compared, 40.5% of the results agreed with each other in the two radiographic methods and buccal roots of the 2nd molar were the closest to the maxillary sinus floor in the cross-sectional tomography. 3. In cross-sectional view, when the vertical relationship of the maxillary sinus floor and maxillary roots was assessed, in 1st molars, type II (the sinus floor that extends down to the buccolingual furcation area) was predominant, while in 2nd molars, type I (the sinus floor located above the level connecting the buccal and lingual apices) was predominant. In the horizontal relationship, in 1st molars, type II (the lowest floor of the maxillary sinus located in between the buccal and lingual roots) was predominant; in 2nd molars, type I (the lowest floor of the maxillary sinus located on the buccal side of the buccal roots) and type II appeared in similar frequency. In conclusion, the SCANORA/sup (R)/ cross-sectional tomography was more effective than the frequently used panoramic view, in that the relationship of the maxillary molars and maxillary sinus floor can be evaluated more accurately and the buccolingual cross-sectional view can also be observed. And maxillary sinus floor that was close to maxillary 2nd molar had tendency to be located on buccal side than that close to 1st molar. Therefore, cross-sectional tomography is an effective and accurate method to evaluate the position of the teeth in relation to the sinus floor preoperative and can be easily used to diagnose localized periapical lesions. Also, the image quality obtained was quite satisfactory.

  • PDF

COMPARISON OF IMAGE REFORMATION USING PERSONAL COMPUTER WITH CT SCAN RECONSTRUCTION (CT 스캔 영상재구성과 개인용 컴퓨터를 이용한 영상 재형성과의 비교에 관한 연구)

  • Jung Gi-Hun;Kim Eun-Kyung;Kim Sang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.2
    • /
    • pp.361-368
    • /
    • 1994
  • Radiographic planning is needed for implant placement in order to determine implant length, jaw bone volume, anatomical stucture and so on. Radiographic examination includes conventional radiography, conventional tomography and CT scan. The most accurate mesurement can be obtained from CT scan. For the cross-sectional view of mandible, CT scan reconstruction is generally needed. But the cross-sectional view of mandible can be reformed by personal computer. This study was performed to examine the clinical usefulness of reformed image using personal computer in comparison with CT scan reconstructed image. CT axial slices of 4 mandibles of 4 volunteers were used. Digital imaging system was composed of Macintosh Ⅱ ci computer, high resolution Sony XC-77 CCD camera, Quick Capture frame grabber board and 'NIH Image' program. Seven reconstructed cross-sectional images within CT machine(CT group) were obtained. And seven reformed cross-sectional images(PC group) after digitization of CT axial slices into the personal computer were obtained. PC group was compared with CT group in the objective and subjective aspects. The results were as follow: 1. Measurement of mandibular height & width in both group showed insignificant difference(P>0.05). 2. Subjective assessment of the mandibular canal in both group showed insignificant difference(P>0.05). 3. Image reformation using personal computer could provide panoramic view, which could not be obtained in CT scan reconstruction.

  • PDF

The Effect of the Axial Plane on Measurement of Available Bone Height for Dental Implant in Computed Tomography of the Mandible (하악의 전산화 단층사진에서 횡단면이 임플랜트를 위한 가용골 높이의 결정에 미치는 영향)

  • Jhin, Min-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.379-388
    • /
    • 2002
  • For the success of dental implant, accurate radiographic evaluation is prerequisite for planning the location of the osseointegrated implants and avoiding injury to vital structures. CT/MPR(computed tomography/multiplanar reformation) shows improved visualization of inferior alveolar canal. In order to obtain cross-sectional images parallel to the teeth, the occlusal plane is used to orientate for the axial plane. If the direction of axial plane is not parallel to the occlusal plane, the reformatted cross-sectional scans will be oblique to the planned fixture direction and will not show the actual dimension of the planned fixture's location. If the available bone height which measured in the cross-sectional view is much greater than the actual available bone height, penetration of canal may occur. The aim of this study is to assess the effect of the axial plane to measurement of available bone height for dental implant in computed tomography of the mandible. 40 patients who had made radiographic stents and had taken CT were selected. The sites that were included in the study were 45 molar regions. In the central panoramic scan, the length from alveolar crest to superior border of inferior alveolar canal(available bone height, ABH) was measured in direction of reformatted cross-sectional plane(uncorrected ABH). Then, length from alveolar crest to superior border of canal was measured in direction of stent(corrected ABH). The angle between uncorrected ABH and corrected ABH was measured. From each ABH, available fixture length was decided by $Br{{\aa}}nemark$ system. The results were following ; the difference between two ABHs was statistically significant in both first and second molar(p< 0.01). The percentage of difference more than 1 mm was 8.7% in first molar and 15.5% in second molar. The percentage of difference more than 2 mm was 2.0% in first molar and 6.6% in second molar. The maximum value of difference was 2.5 mm in first molar and 2.2 mm in second molar. The correlations between difference of 2 ABHs and angle was positive correlations in both first and second molar. The correlation coefficient was 0.534 in first molar and 0.728 in second molar. The second molar has a stronger positive correlation. The percentage of disagreement between 2 fixture lengths from two ABHs was 24.4% in first molar and 28.9% in second molar.