• Title/Summary/Keyword: palm

Search Result 822, Processing Time 0.019 seconds

A study on dermatologic diseases of workers exposed to cutting oil (절삭유 취급 근로자의 피부질환에 관한 연구)

  • Chun, Byung-Chul;Kim, Hee-Ok;Kim, Soon-Duck;Oh, Chil-Hwan;Yum, Yong-Tae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.4 s.55
    • /
    • pp.785-799
    • /
    • 1996
  • We investigated the 1,004 workers who worked in a automobile factory to study the epidemiologic characterists of dermatoses due to cutting oils. Among the workers, 667(66.4%) answered the questionaire. They are belong to 5 departments of the factory-the Engine-Work(258 workers), Gasoline engine Assembly(210), Diesel engine Assembly(96), Power train Work(86), Power train Assembly(17). We measured the oil mist concentration in air of the departments and examined the workers who had dermatologic symptoms. The results were follows; 1) Oil mist concentration ; Of all measured points(52),9 points(17.2%) exeeded $5mg/m^3$- the time-weighed PEL-and one department had a upper confidence limit(95%) higher than $5mg/m^3$. 2) Dermatologists examined 213 workers. 172 of them complained any skin symptoms at that time - itching(32.5%), papule(21.6%), scale(15.7%), vesicle(12.5%) in order. The abnormal skin site found by dermatologist were palm(29.3%), finger & nail(24.6%), forearm(16.2%), back of hand(8.4%) in order. 3) As the result of physical examination, we found that 160 workers had skin diseases. Contact dermatitis was the most common; 69 workers had contact dermatitis alone(43.1%), 11 had contact dermatitis with acne(6.9%), 10 had contact dermatitis with folliculitis(6.3%), 1 had contact dermatitis with acne & folliculitis, and 1 had contact dermatitis with abnormal pigmentation. Others were folliculitis(9 workers, 5.6%), acne(8, 5.0%), folliculitis & acne (2, 1.2%), keratosis(1, 0.6%), abnormal pigmentation (1, 0.6%), and non-specific hand eczema (47, 29.3%). 4) The prevalence of any skin diseases was 34.0 pet 100 in cutting oil users, and 13.3 per 100 in non- users. Especially, the prevalence of contact dermatitis was 23.0 per 100 in cutting oil users and 23.0 per 100 in non-users. 5) We tried patch test(standard serise, oil serise, organic solvents) on 49 patients to differentiate allergic contact dermatitis from irritant contact dermatitis and found 20 were positive. 6) In a multivariate analysis(independant=age, tenure, kinds of cutting oil), the risk of skin diseases was higher in the water-based cutting oil user and both oil user than non-user or neat oil user(odds ratio were 2.16 and 2.78, respectively). And the risk of contact dermatitis was much higher at the same groups(odds ratio were 5.16 and 6.82, respectively).

  • PDF

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF