• Title/Summary/Keyword: palladium surface finish

Search Result 5, Processing Time 0.024 seconds

Prevention of Running Blots between the Patterns during the Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) Surface Finish (무전해 니켈·팔라듐·금도금 표면처리 공정의 도금 번짐 불량 및 개선)

  • Eom, Ki Heon;Seo, Jung-Wook;Won, Yong Sun
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2013
  • The running blots between patterns during electroless nickel electroless palladium immersion gold (ENEPIG) surface finish of printed circuit board (PCB) are investigated and a proper solution is presented. Computational chemistry is first employed to understand the process and experiments are then designed to verify the proposed ideas. A $PdCl_2$ activator which has relatively weak chemical bonding to the epoxy resin is introduced to prevent the formation of palladium seeds on the epoxy resin and a couple of operational measures such as increasing HCl concentration and lowering the temperature of Pd activation process are executed to prevent a further hydrolysis of $PdCl_2$ to more stable $Pd(OH)_2$ in aqueous solution. Computational chemistry provides thermodynamic backgrounds for experiments and their results. This combined approach is expected to be very useful in the research of relevant processes.

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

Effect of Reflow Number and Surface Finish on the High Speed Shear Properties of Sn-Ag-Cu Lead-free Solder Bump (리플로우 횟수와 표면처리에 따른 Sn-Ag-Cu계 무연 솔더 범프의 고속전단 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.11-17
    • /
    • 2009
  • The drop impact reliability comes to be important for evaluation of the life time of mobile electronic products such as cellular phone. The drop impact reliability of solder joint is generally affected by the kinds of pad and reflow number, therefore, the reliability evaluation is needed. Drop impact test proposed by JEDEC has been used as a standard method, however, which requires high cost and long time. The drop impact reliability can be indirectly evaluated by using high speed shear test of solder joints. Solder joints formed on 3 kinds of surface finishes OSP (Organic Solderability Preservation), ENIG (Electroless Nickel Immersion Gold) and ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) was investigated. The shear strength was analysed with the morphology change of intermetallic compound (IMC) layer according to reflow number. The layer thickness of IMC was increased with the increase of reflow number, which resulted in the decrease of the high speed shear strength and impact energy. The order of the high speed shear strength and impact energy was ENEPIG > ENIG > OSP after the 1st reflow, and ENEPIG > OSP > ENIG after 8th reflow.

  • PDF

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

Comparative Study of Interfacial Reaction and Drop Reliability of the Sn-3.0Ag-0.5Cu Solder Joints on Electroless Nickel Autocatalytic Gold (ENAG) (Electroless Nickel Autocatalytic Gold (ENAG) 표면처리와 Sn-Ag-Cu솔더 간 접합부의 계면반응 및 취성파괴 신뢰성 비교 연구)

  • Jun, So-Yeon;Kwon, Sang-Hyun;Lee, Tae-Young;Han, Deog-Gon;Kim, Min-Su;Bang, Jung-Hwan;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.63-71
    • /
    • 2022
  • In this study, the interfacial reaction and drop impact reliability of Sn-Ag-Cu (SAC) solder and electroless nickel autocatalytic gold (ENAG) were studied. In addition, the solder joint properties with the ENAG surface finish was compared with electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). The IMC thickness of SAC/ENAG and SAC/ENEPIG were 1.15 and 1.12 ㎛, respectively, which were similar each other. The IMC thickness of the SAC/ENIG was 2.99 ㎛, which was about two times higher than that of SAC/ENAG. Moreover, it was found that the IMC thickness of the solder joint was affected by the metal turnover (MTO) condition of the electroless Ni(P) plating solution, and it was found that the IMC thickness increased when the MTO increased from 0 to 3. The shear strength of SAC/ENEPIG was the highest, followed by SAC/ENAG and SAC/ENIG. It was found that when the MTO increased, the shear strength was lowered. In terms of brittle fracture, SAC/ENEPIG was the lowest among the three joints, followed by SAC/ENAG and SAC/ENIG. Likewise, it was found that as MTO increased, brittle fracture increased. In the drop impact test, it was confirmed that the 0 MTO condition had a higher average number of failures than the 3 MTO condition, and the average number of failures was also higher in the order of SAC/ENEIG, SAC/ENAG, and SAC/ENIG. As a result of observing the fracture surface after the drop impact, it was found that the fracture was between the IMC and the Ni(P) layer.