• Title/Summary/Keyword: palindromic structure

Search Result 12, Processing Time 0.021 seconds

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh;Seongjin An;Sungchul Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.

Human Y Chromosome: Structure, Function and Evolution (인간 Y 염색체: 구조, 기능 그리고 진화)

  • 홍경원;허재원;김희수
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.958-969
    • /
    • 2003
  • The human Y chromosome is strictly paternally inherited and does not X-Y crossing over during male meiosis in most of its length. Although this region came to be known as the non-recombining region Y (NRY), it was renamed as male-specific region Y (MSY) due to abundant recombination. The MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerated and ampliconic. The X-transposed sequences exhibit 99% identity to the X chromosomal sequences. The X-degenerate sequences are remnants of ancient autosomes from which the modem X and Y chromosomes evolved. Eight palindromes of the ampliconic comprise one-quarter of the euchromatic DNA of the male-specific region of the human Y chromosome. They contain many testis-specific genes and typically exhibit 99.97% intra-palindromic (arm-to-arm) sequence identity. The arms of these palindromes must have subsequently engaged in gene conversion, driving the pair arms to evolve it concert. Averages of approximately 600 nucleotides per newborn male have undergone Y-Y gene conversion, which has had an important role in the evolution of multi-copy testis gene families in the MSY.