• Title/Summary/Keyword: painting work processes in the machine and shipbuilding industries

Search Result 3, Processing Time 0.017 seconds

The Analysis of the Painting Work Clothes Clothing Comfort and Wearer Mobility Considering the Work Environment in the Machine and Shipbuilding Industries

  • Park, Gin-Ah;Park, Hye-Won;Bae, Hyun-Sook
    • Journal of Fashion Business
    • /
    • v.16 no.3
    • /
    • pp.13-31
    • /
    • 2012
  • The purpose of the study was to analyze the work clothes' clothing comfort and wearer mobility of painting workers with the consideration of the work environment features in the machine and shipbuilding industries in South Korea. A questionnaire survey was conducted for the study, which consisted of questions on the clothing comfort and wearer mobility aspects of painting work clothes by clothes types and body parts. The work clothes' clothing comfort and wearer mobility levels were scaled in 5 points i.e. 1(: very tight/very uncomfortable) to 5(: very slack/very comfortable). The painting work environmental hazardous features were considered as high impact levels of workplace temperature, oxygen deficiency, organic solvent, toxic gas factors while metal fragment factor only impacts 'low' in the painting processes with the findings throughout this study. Since the painting work consisted of surface washing and the spray and touch-up painting processes, which was carried out in an outdoor work place, the painting work clothes should meet high performance of waterproofing from the painting material and air permeability specially in summer as well as thermal performance in winter. The subjects painting workers' assessment of the existing work clothes' clothing oppression was in the levels between 3 (i.e. moderate) and 4 (i.e. comfortable) in a range of 1 to 5 points. The existing painting work clothes' wearer mobility was evaluated 'very uncomfortable' in all work clothes parts, especially, armhole length, biacromial breadth, sleeve length of the jumper; and body rise, waist, hip, thigh and knee circumferences of the pants.

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.

Necessity to incorporate XR-based Training Contents Focused on Cable pulling using Winches in the Shipbuilding (윈치를 활용한 케이블 포설을 중심으로 고찰한 XR 기반 훈련 콘텐츠 도입의 필요성)

  • JongMin Lee;JongSeong Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.53-62
    • /
    • 2023
  • This paper has suggested the necessity of introducing training contents using XR(Extended reality) technology as a way to lower the high rate of nursing accidents among unskilled technical personnel in domestic shipbuilding industry, focusing on cable pulling using winch. The occurrence rate of nursing accidents in the domestic shipbuilding industry was almost double(197.4%) (2017~2020) when compared with other manufacturing industries. In particular, it is worth noting that more than 31.8% of nursing accidents in the shipbuilding industry occurred among workers whose job experience is no more than 6 months. Most of new workers are seen to have hard time due to several factors such as lack of work information, inexperience, and unfamiliarity with the working environments. This indicates that it is essential to incorporate more effective training method that could help new workers become familiar with technical skills as well as working environments in a short period of time. Currently, education/training at the domestic shipyard is biased toward technical skills such as welding, painting, machine installation, and electrical installation. Contrary, even more important training required to get new workers used to the working environment has remained at a superficial level such as explaining ship building processes using 2D drawings. This may be the reason why it is inevitable to repeat similar training at OJT (On-the-Job Training) even at the leading domestic companies. Domestic shipbuilding industries have been attracting a lot of new workers thanks to recent economic recovery, which is very likely to increase the occurrence of disasters. In this paper, the introduction of training using XR technology was proposed, and as a specific example, the process of pulling cables using winches on ships was implemented as XR-based training content by using Unity. Using the developed content, it demonstrated that new workers can experience the actual work process in advance through simulation in a virtual space, thereby becoming more effective training content that can help new workers become familiar with the work environment.