• Title/Summary/Keyword: paint deterioration life

Search Result 2, Processing Time 0.018 seconds

Evaluation of Deterioration Propagation Life of Steel Bridge Paints According to Surface Treatment Methods and Heavy-Duty Painting Types (표면처리방법에 따른 강교용 일반중방식도장계의 열화진행수명 평가)

  • Kim, Gi-Hyeok;Jeong, Young-Soo;Ahn, Jin-Hee;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, to evaluate deterioration propagation life and deterioration curve of the shop painted and field re-painted steel bridges, accelerated corrosion tests were carried out on 4 types of heavy-duty painting systems with different surface treatments. The surface treatments prior to painting were examined by hand tool(SSPC SP-2), power tool(SP-3,) or blast cleaning(SP-10) considering shop painting and field re-painting. The paint deterioration curves for each painting system and surface treatment were evaluated based on corrosion propagation from the initial paint defects. From the test results, the paint deterioration life of shop painted and field re-painted system was evaluated and compared by using corrosivity categories and durability performance evaluation of structural steel. The deterioration propagation life of shop and field paint was estimated in 18 to 21 years and 5.3 to 8.0 years with atmospheric corrosion category C4.

Development of an Economic Evaluation model for Coating System Based on Environmental Conditions of Power Generation Structure (발전구조물의 환경조건을 반영한 도장계 선정 경제성 평가 모델 개발)

  • Kim, In Tae;Lee, Su Young;An, Jin Hee;Kim, Chang Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.77-85
    • /
    • 2020
  • Currently, life-cycle cost analysis methods are introduced to maintain large infrastructure facilities in Korea. However, there are not many cases in which maintenance models are applied that reflect conditions such as the location of a facility and its surroundings. In order to establish an appropriate maintenance strategy, a cost prediction, deterioration model, and a decision model reflecting uncertainty should be established. In this study, an economic analysis model was developed for long-term cost planning and management based on user decisions based on maintenance methods and judgment criteria for painting specifications applied to power generation structures. The performance of the paintwork was assessed through the paint deterioration test for the application of the economic analysis model, and the results of the economic analysis according to the applied paint specifications (Urethan, polysiloxane, fluorine) were verified by applying the proposed economic analysis model. In this study, it is believed that the selection of the repair cycle and evaluation methods applied with the development model rather than the performance of the painting can be expected to be used as basic data for the maintenance cycle, even if it is not limited to the painting.