• Title/Summary/Keyword: paddy water

Search Result 1,313, Processing Time 0.022 seconds

Effects of Soil, Water Level and Shading on Growth of Acorus calamus var. angustatus (토양과 수위 및 차광의 차이가 창포(Acorus calamus var. angustatus)의 생육에 미치는 영향)

  • Shin Seung-Hoon;Kim Min-Soo;Kim Yoon-Ha
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.63-72
    • /
    • 2004
  • This study was carried out to analyze effects of soil, water level and shading on growth of sweet flag(Acorus calamus var. angustatus). Three types of soil were used, which included sandy, silty loam and paddy loam soil. Three levels of shading were applied in the experiment: no shading, 55% shading and 75% shading. The water levels were also adjusted to three levels in the experiment. The results are summarized as follows; 1. The cultivation of sweet flag in sandy soil with low water level resulted in decreased fresh weight compared to that at planting. This result indicates that the water level should be maintained higher than the soil surface for sweet flag growth in sandy soil. 2. 5 out of 72 sweet flags died in paddy loam soil. Water saturation of soil easily reduced paddy loam soil, and root growth of sweet flags in reduced soil condition were restricted, resulting in the dead plants. 3. The growth of sweet flag in paddy loam soil was worse than those in silty loam, indicating that reduced soil conditions in paddy loam is harmful to root growth. In planting sweet flags in paddy loam, improved soil aeration in paddy loam soil is necessary for good growth of sweet flag. 4. The maintaining of high water levels is better than that of low water levels in sweet flag cultivation. During winter, soil near the water surface froze and sweet flags in frozen soil were stressed physiologically. Maintaining high water levels prevents soil from being frozen which is good for the growth of sweet flags. 5. There was not significant difference in the growth of the sweet flag between non-shading and 55% shading. It thus appears that sweet flags can grow soundly under shading rate lower than 55%.

Irrigation water temperature and cold water damage of paddy (관개수온과 벼의 냉수피해)

  • 정상옥;오창준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.14-21
    • /
    • 1998
  • In 1996, a cold-water damage occured in the paddy field at downstream of the Unmoon dam. To study the cause and the preventive measures of the cold-water damage a field study was performed during the growing season of 1997. Field measurements such as water temperatures at reservoir, irrigation canal and in the paddy field were made. As a result, there was no cold-water damage due to the right irrigation water management practice in 1997. The cold-water damage is passible to happen, however, and the preventive measures were provided.

  • PDF

Evaluation of Water Supply Adequacy using Real-time Water Level Monitoring System in Paddy Irrigation Canals (실시간 관개수로 수위 모니터링을 활용한 논 관개용수 공급적정성 평가)

  • Hong, Eun Mi;Nam, Won-Ho;Choi, Jin-Yong;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Appropriate amount of water supply to paddy fields in proper time is important to achieve efficient agricultural water management. The purpose of this study is to evaluate the irrigation water supply adequacy for paddy fields using water level data in irrigation canals. For the evaluation, the real-time water level data were collected from main canals in the Dongjin irrigation district for 2 years. Using the water level data, delivered irrigation water amounts at the distribution points of each canal were calculated. The water balance model for paddy field was designed considering intermittent irrigation and the irrigation water requirement was estimated. Irrigation water supply adequacy was analyzed from main canals to the irrigation blocks based on the comparison between estimated requirement and delivered irrigation water amounts. From the adequacy analysis, irrigation water supply showed poor management condition in 2012 with low efficiency except the Daepyong canal section, and the adequacy in 2013 was good or fair except the Yongsung canal section. When irrigation water for paddy fields was insufficient, water supply adequacy was affected by irrigation area, but when irrigation water was enough to supply, adequacy was affected by distance from main canal to distribution points. These results of the spatial and temporal dimensions of the irrigation adequacy could be utilized for efficient irrigation water management to improve the temporal uniformity and equity in the water distribution for paddy fields.

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

Water Requirement and Water Quality in the Paddy Plot Irrigated by Pipelines With an Automatic Hydrant (관수로 자동급수전 논에서의 용수량과 수질 -충북 보은군 학림 관수로 지구를 대상으로-(지역환경 \circled3))

  • 오광영;김진수;김선종;김영화
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.629-636
    • /
    • 2000
  • In this study, we investigated the characteristics of labor of water management and maintenance, water requirement, water quality(T-N, T-P, COD) in the paddy plot irrigated by pipeline with two types of hydrants: automatic and manual. The automatic hydrant have been introduced to the paddy field to save water and reduce the labor for water management. The automatic hydrant is automatically opened and closed according to the water depth of a paddy plot. The automatic hydrant generally developed more troubles than the manual hydrant. The water requirements are 2.7mm/d for the automatic hydrant plot and 17.6mm/d for the manual hydrant plot. The concentrations of pollutants in the two plots are higher in the ponded water than in the irrigation water and are highest after fertilizer application.

  • PDF

Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods (관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성)

  • Han, Kuk-Heon
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

Variations of Dissolved and Total Phosphorus Concentrations in Irrigation, Flooding, and Drainage Water of Paddy Fields (논 관개수, 담수 및 유출수의 용존인과 총인 농도 변화)

  • Choi, Dongho;Cho, Sohyun;Jung, Jaewoon;Park, Hyunkyu;Choi, Woojung;Yoon, Kwangsik;Kim, Youngsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.434-440
    • /
    • 2017
  • In order to understand the characteristics of phosphorus in the paddy field, this study analyzed $PO_4-P$ and T-P concentrations of irrigation water, flooding water, and runoff from 2008 to 2010. The variation of phosphorous form within hydrologic cycle around the rice paddy field was investigated using the ratio of $PO_4-P$ to TP. In addition, the correlation between pH, EC, and DO in flooding water was analyzed and the factors affecting phosphorus form in paddy field were investigated. The concentration of T-P in flooding water was high during the survey period, and the concentration of T-P in runoff was assumed to be decreased by dilution due to irrigation and rainfall. On the other hand, the ratio of $PO_4-P$ to T-P was lower in flooding water than those of irrigation water and runoff, which was interpreted to be due to the fact that the phosphorus fertilizer was applied in the paddy field but the adsorption was rapidly occurred to the paddy field by the soil. The similar proportions of $PO_4-P$ to T-P in flooding water and runoff suggest that the form of phosphorus outflowed from the paddy is influenced by the form of phosphorus in the flooding water of paddy field. In addition, DO concentration in flooding water showed negative correlation with the concentrations of $PO_4-P$ and T-P. The effort to survey frequent irrigation water quality data is required for the analysis of phosphorus behavior in the paddy water system since concentration of phosphorous and DO in irrigation water would influence rhe form of phosphorous in flooding water and subsequent runoff.

Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy (단일저수지 농업가뭄평가모형의 개발)

  • Chung, Ha-Woo;Choi, Jin-Yong;Park, Ki-Wook;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • This study aimed to develop an agricultural drought assessment methodology for irrigated paddy field districts from a single reservoir. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The suggested model, SRADEMP (a Single Reservoir Agricultural Drought Evaluation Model for Paddy), was composed of 4 submodels: PWBM (Paddy Water Balance Model), RWBM (Reservoir Water Balance Model), FA (Frequency and probability Analysis model), and DCI (Drought Classification and Indexing model). Two indices, PDF (Paddy Drought Frequency) and PDI (Paddy Drought Index) were also introduced to classify agricultural drought severity Both values were divided into 4 steps, i.e. normal, moderate drought, severe drought, and extreme drought. Each step of PDI was ranged from +4.2 to -1.39, from -1.39 to -3.33, from -3.33 to -4.0 and less than -4.0, respectively. SRADEMP was applied to Jangheung reservoir irrigation district, and the results showed good relationships between simulated results and the observed data including historical drought records showing that SRADEMP explains better the drought conditions in irrigated paddy districts than PDSI.

Analysis of Wastewater Reuse Effect on Field-Scale Water Quality (하수처리수의 농업용수 재이용에 따른 포장단위 수질영향 분석)

  • Seong, Choung-Hyun;Kim, Sung-Jae;Kim, Sung-Min;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-65
    • /
    • 2011
  • The purpose of this study was to analyze the water quality change when wastewater applied to study paddy fields. CREAMS-PADDY (Chemical, Runoff and Erosion from Agricultural Management System) model was used to estimate the field-scale water quality. Simulated results were compared with observed data monitored from Byeongjeom study paddy fields which is located near the Suwon sewage treatment plant in Gyeonggi-do. Significance analysis was performed for the three different irrigation water quality level and five fertilizer reduction scenarios using LSD (Least Significant Difference) and DMRT (Duncan's Multiple Range Test). Total nitrogen was found to be significant for both irrigation water quality level and fertilizer reduction while total phosphorus was not. Annual drainage load for total nitrogen was reduced by 66~92 % compared to irrigation load when treated wastewater irrigated to study paddy fields from 2002 to 2007. Total phosphorus was reduced by 70~86 %.

논에서의 영양물질 배출량 추정( I ) - 모형의 개발 -

  • Chung, Sang-Ok;Kim, Hyeon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • The objective of this study is to develop GLEANS-PADDY model to predict nutrients loading from paddy-field areas. This model is developed by modifying the GLEANS model which is used for uplands, and composed of hydrology and nutrient submodels. The optimal field size for CLEANS-PADDY model application is about up to 50 ha with mild slope, relatively homogeneous Soils and spatially rainfall, and a single crop farming. The CLEAMS model is modified to handle ponded soil surface condition and saturated soil profile in paddy field. In the hydrology submodel of the CLEAMS-PADDY model. the ponded depth routing method is used to handle the ponded water condition of paddy field. To compute potential evapotranspiration the FAO-24 Corrected Blaney-Criddle method is used for paddy field instead of Penman-Monteith method in the CLEAMS model. In the nutrients submodel of the CLEAMS-PADDY model, the soil was assumed saturated and soil profile in the root zone was divided into oxidized and reduced zones.