• Title/Summary/Keyword: paclitaxel

Search Result 331, Processing Time 0.029 seconds

Inhibition of NF-kB/Rel by Paclitaxel in Mouse Macrophages

  • Lim, Jin-Soo;Lee, Seog-Ki;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • We demonstrate that paclitaxel, an antitumor agent derived from yew tree, inhibits LPS- and $IFN-{\gamma}$-induced NF-kB/Rel activation in RAW 264.7 cells. Previously, paclitaxel ($>10{\mu}M$) has been known to induce iNOS gene expression in macrophages. However, in the previous report we described that the pretreatment of macrophages with low concentration of paclitaxel ($0.1{\mu}M$) for 8 h inhibited LPS-induced iNOS gene expression. Pretreatment of RAW 264.7 cells with paclitaxel significantly inhibited NF-kB/Rel transcriptional activation. Electrophoretic mobility shift assay further confirmed that pretreatment of macrophages with paclitaxel inhibited NF-kB/Rel DNA binding. Taxotere, a semisynthetic analog of paclitaxel, also inhibited LPS- and $IFN-{\gamma}$-induced iNOS gene expression. Collectively, these series of experiments indicate that paclitaxel inhibits iNOS gene expression by blocking NF-kB/Rel activation.

Paclitaxel Suppress Dedifferentiation via Mitogen-activated Protein Kinase Pathway in Rabbit Articular Chondrocyte

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2009
  • Microtubule-interfering agents (MIAs), including paclitaxel, have been attributed in part to interference with microtubule assembly, impairment of mitosis, and changes in cytoskeleton. But the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. This study investigated the effect of paclitaxel on differentiation such as type II collagen expression and sulfated proteoglycan accumulation in rabbit articular chondrocytes. Paclitaxel caused differentiated chondrocyte phenotype as demonstrated by increment of type II collagen expression and proteoglycan synthesis Paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced paclitaxel-induced differentiation, whereas inhibition of p38 kinase with SB203580 suppressed paclitaxel-induced differentiation. Our findings suggest that ERK-1/2 and p38 kinase oppositely regulate paclitaxel-induced differentiation in chondrocytes.

  • PDF

Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation (표면적이 증가된 분별침전에 의한 paclitaxel의 입자 크기 감소)

  • Lee, Ji-Yeon;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.157-162
    • /
    • 2012
  • In this study, we have for the first time applied increased surface area fractional precipitation in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no surface area increasing material was employed, the addition of ion exchange resin as a surface area increasing material resulted in a considerable decrease in the size of the paclitaxel precipitate. When ion exchange resin was used, the paclitaxel particles were four to five times smaller, having less than a 20 ${\mu}m$ radius, than those obtained in the absence of ion exchange resin. This is presumably because the growth of paclitaxel particles was impeded by the addition of ion exchange resin. The size of the paclitaxel precipitate also depended on the material used to increase the surface area, a result considered to be due to differences in the affinity between the particular ion exchange resin used and the paclitaxel particles. The yield of paclitaxel was significantly improved when ion exchange resin was used as a material to increase surface area. Paclitaxel, with a reduced particle size due to the addition of a surface area increasing material during the fractional precipitation process, is believed to be particularly useful for practical applications of the drug.

The Effect of Tetramethoxyflavone on the Pharmacokinetics of Paclitaxel in Rats (테트라메톡시프라본이 파크리탁셀의 약물동태에 미치는 영향)

  • 나종학;백채선;최준식
    • YAKHAK HOEJI
    • /
    • v.48 no.4
    • /
    • pp.226-230
    • /
    • 2004
  • The pharmacokinetics of orally administered paclitlxel (50 mg/kg) was studied in six rabbits after 1hr pretreatment (2.0 mg/kg and 10 mg/kg) of tetramethoxyflavone or coadministration of (2.0 mg/kg, 10 mg/kg and 20 mg/kg) tetramethoxyflavone. The area under the plasma concentration-tine curve (AUC) and plasma concentration of paclitaxe1 coadministered with tetramethoxyflavone (10 mglkg) were increased significantly (p<0.05) compared with control. However, coadministration of tetramethoxyflavone (2 and 20 mg/kg) showed no significant effect on the pharmacokinetic parameters of paclitaxel. Pretreatment with tetramethoxyflavone significantly (p<0.05) increased the plasma concentration of paclitaxel. The area under the plasma concentration-time curve (AUC) and the peak concentration (C$_{max}$) of paclitaxel pretreated with tetramethoxyflavone were increased significantly (p<0.01, p<0.05) compared with control. The terminal half. life of paclitaxel pretreated with tetramethoxyflavone (2 mg/kg and 10 mg/kg) was significantly (p<0.05) prolonged compared with control. Pretreatment with tetramethoxyflavone (2.0 mg/kg, 10 mg/kg) significantly (p<0.01, p<0.05) increased the absolute bioavailability of paclitaxel compared with the control (154∼179%). On the basis of the results, it might be considered that tetramethoxyflavone may inhibit cytochrome P450 or P-glycoprotein efflux pump which are engaged in paclitaxel metabolism, result in increased AUC and t$_{1}$2/ of paclitaxel. However, further study should be conducted to clarify the roles of cytochrome P450 and P-glycoprotein on paclitaxel bioavailability with/or without tetramethoxyflavone. P-glycoprotein on paclitaxel bioavailability with/or without tetramethoxyflavone.

Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells

  • Lee, Na-Young;Lee, Ha-Eun;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.68-72
    • /
    • 2014
  • When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel was time- and temperature-dependent. Paclitaxel was eliminated about 50% from the cells within 30 min. The uptake of paclitaxel was saturable with $K_m$ of $168{\mu}M$ and $371{\mu}M$ in TR-TBT 18d-1 and TR-TBT 18d-2, respectively. [$^3H$]Paclitaxel uptake was markedly inhibited by cyclosporine and verapamil, well-known substrates of P-glycoprotein (P-gp) transporter. However, several MRP substrates and organic anions had no effect on [$^3H$]paclitaxel uptake in TR-TBT cells. These results suggest that P-gp may be involved in paclitaxel transport at the placenta. TR-TBT cells expressed mRNA of P-gp. These findings are important for therapy of breast and ovarian cancer of pregnant women, and should be useful data in elucidating teratogenicity of paclitaxel during pregnancy.

Drug Interaction between Flavone and Paclitaxel in Rats (프라본과 파크리탁셀과의 약물상호작용)

  • 최준식;이진환
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • The purpose of this study was to investigate the effect of flavone (20 mg/kg) on the pharmacokinetic parameters and the bioavailability of paclitaxel (40 mg/kg) orally coadministered in rats. The plasma concentration of paclitaxel in combination with flavone was increased significantly (coadministration p<0.05, pretreatment p<0.0l) compared to that of control. Area under the plasma concentration-time curve (AVC) of paclitaxel with flavone was significantly (coadministration p<0.05, pretreatment p<0.0l) higher than that of control. Peak concentration (Cmax) of paclitaxel with flavone were significantly increased (coadministration p<0.05, pretreatment p<0.01) compared to that of control. Time to peak concentration (Tmax) of paclitaxel with flavone decreased significantly (p<0.05) than that of control. The total body clearance (CLt) and elimination rate constant ($\beta$) of paclitaxel with flavone were significantly reduced (p<0.05) compared to those of control. Half-life (t$_{1}$2/) of paclitaxel with flavone was significantly prolonged (p<0.05) compared to that of control. Based on these results, it might be concluded that flavone may enhance bioavailability of paclitaxel through the inhibition of cytochrome P450 and P-glycoprotein, which are engaged in paclitaxel absorption and metabolism in liver and gastrogintestinal mucosa, respectively.

Effect of the Paclitaxel and Radiation on the Large Bowel Mucosa of the Rat (횐쥐의 대장점막에 Paclitaxel(Taxol)과 방사선조사의 효과)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • Purpose : Paclitaxel is a chemotherapeutic agent with a potent microtubule stabilizing activity that arrests mitosis at G2-M phase of cell cycle which is the most radiosensitive period. Therefore paclitaxel is considered as a cell cycle-specific radiosensitizer. This study investigates the effect of paclitaxel on the radiation response of the normal large bowel mucosa of the rat. Materials and Methods: The rats were divided into the three groups i.e., single intraperitoneal infusion of paclitaxel (10 mg/kg), a single fraction of irradiation (8 Gy, x-ray) to the whole abdomen, and a combination of irradiation (8 Gy, x-ray) given 24 hours after paclitaxel infusion. The histological changes as well as kinetics of mitotic arrest and apoptosis were evaluated on the large bowel mucosa at 6 hours, 1 day, 3 days and 5 days after treatment with paclitaxel alone, radiation alone and combination of paclitaxel and radiation. Results : The incidence of the mitotic arrest was not increased by paclitaxel infusion. The apoptosis appeared in 24 hours after paclitaxel infusion, and the histopathologic changes such as vesiculation, atypia and reduction of the goblet cell of the mucosa of the large bowel were demonstrated during the period from 6 hours to 3 days after, and returned to normal in 5 days after paclitaxel infusion. In irradiated group, the apoptosis was increased in 6 and 24 hours after irradiation, and the histopathologic changes of the mucosa were appeared in 24 hours and markedly increased in 3 days and returned to normal in 5 days. In combined group of irradiation and paclitaxel infusion, the apoptosis was appeared in 3 days and the histopathologic changes appeared during the period from 6 hours to 3 days after infusion. On the basis of the incidence of apoptosis and the degree of the histopathologic changes of the large bowel mucosa, there seemed to be additive effect by paclitaxel on radiation rather than sensitizing effect. Conclusions: The histopathological changes of large bowel mucosa in combined group compared to radiation alone group suggested an additive effect of paclitaxel on radiation response in the large bowel of rat.

  • PDF

Pharmacokinetic Interaction between Nifedipine and Paclitaxel in Rats (니페디핀과 파크리탁셀의 약물동태학적 상호작용)

  • 최준식;이종기
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The purpose of this study was to investigate the effect of coadministration and 3 days-pretreatmemt of niledipine (2, 10 mg/kg) on the pharmacokinetic parameters and bioavailability of paclitaxel (50 mg/kg) after oral administration in rats. Coadministration of nifedipine with paclitaxel did alter the $C_{max}$ (115${\pm}$29 ng/ml without nifedipine; 135${\pm}$35 ng/ml with nifedipine (10 mg/kg): p<0.05) and AUC (188${\pm}$459 ng/mlㆍhr with-out nifedipine; 2546${\pm}$642 ng/mlㆍhr with nifedipine; p<0.05). Three days treatment of nifedipine on the prior to paclitaxel administration increased the $t_{1/2}$ 〔9.90${\pm}$2.47 hr without nifedipine; 12.37${\pm}$3.12 hr with nifedipine (2 mg/kg): 12.83${\pm}$3.32 hr with nifedipine (10 mg/ml); p<0.05] and AUC [1833${\pm}$459 ng/mlㆍhr without nifedipine; 2663${\pm}$648 ng/mlㆍhr with nifedipine (2 mg/kg): 3006${\pm}$734 ng/mlㆍhr with nifedipine (10 mg/ml): p <0.05]. Drug interaction between nifedipine and paclitaxel decreased the elimination rate constant and increased the oral bioavailability of paclitaxel. On the basis of the results of this study, it might be considered that nifedip ine may inhibit cytochrome P450, which are engaged in paclitaxel metabolism, result in increased $t_{1/2}$ and AUC of paclitaxel. However, further study should be conducted to clarify the roles of cytochrome P450 and P-glycoprotein on paclitaxel bio-availability wit/or without nifedipine.

Paclitaxel Stimulates Cyclooxygenase-2 Expression via MAP Kinase Pathway in Rabbit Articular Chondrocytes

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Paclitaxel, an antimicrotubule agent, binds to beta-tubulin in the microtubule and stabilizes the polymer, thereby repressing dynamic instability. Here, we have demonstrated that microtubule cytoskeletal architecture involved in regulation of the COX-2 expression in chondrocyte treated with paclitaxel. Paclitaxel enhanced COX-2 expression and prostaglandin E2 production, as indicated by the Western blot analysis, reverse transcriptase PCR(RT-PCR) and immunofluorescence staining, and $PGE_2$ assay, respectively. In our previous data have shown that paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase(Im et al., 2009). SB203580, an inhibitor of p38 kinase, blocked the induction of COX-2 expression by paclitaxel. Also PD98059, an inhibitor of ERK-1/2 kinase was blocked the induced COX-2 expression. These results indicate that activation of ERK-1/2 and p38 kinase is required for COX-2 expression induced by paclitaxel in rabbit articular chondrocytes.

  • PDF

Stability of Paclitaxel with Cephalosporines in $0.9\%$ Sodium Chloride Injection and $5\%$ Dextrose Injection During Simulated Y-Site Administration (Y-Site 동시투여 동안 $0.9\%$ 생리식염수와 $5\%$ 포도당 용액에서의 Paclitaxel과 Cephalosporines의 안전성 연구)

  • Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.2
    • /
    • pp.91-96
    • /
    • 2003
  • Paclitaxel과 cephalosporines(제 1세대인 ceftezole sodium과 cephradine, 제2세대인 cefamandole sodium과 cefmetazole sodium, 제3세대인 cefoperazone sodium과 cefotaxime sodium 그러고 제4세대인 cefepime hydrochloride)을 $5\%$포도당주사액 그리고 $0.9\%$ 염화나트륨주사액과 함께 Y-Site 장치를 써서 환자에게 주입할 때 paclitaxel의 안정성에 관하여 연구하였다. Paclitaxel 0.3 mg/ml 및 1.2 mg/ml과 cephalosporines 20 mg/m을 각각 1 : 1로 혼합한 후 0, 1, 2, 4, 12시간 시점에서 paclitaxel의 농도를 HPLC로 분석하였다. 방해물질에 의한 분석오차를 줄이기 위해 분석법을 여러 상태에서 확인하였으며, 각 농도에서 3차례씩 실험하였고 각 샘플은 2차례 반복하여 HPLC로 분석하였다. 분석전에 각 시료의 투명도, 색의 변화, 침전상태 및 pH를 검사하였다. Paclitaxel 0.3 mg/ml 및 1.2 mg/ml와 cephalosporines 20 mg/ml를 각각 혼합하였을 때 12시간 동안 안정하였으며, 주사액의 혼탁이나 색의 변화 및 침전은 나타나지 않았으며 pH도 변하지 않았다.

  • PDF