• Title/Summary/Keyword: packet key

Search Result 233, Processing Time 0.024 seconds

Channel-Adaptive Bidirectional Motion Vector Tracking over Wireless Packet Network (무선 패킷 네트워크에서의 채널 적응형 양방향 움직임 벡터 추적 기술)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.94-101
    • /
    • 2007
  • Streaming video is expected to become a key service in the developing heterogeneous wireless network. However, sufficient quality of service is not offered to video applications because of bursty packet losses. An effective solution for packet loss in wireless network is to perform a proper concealment at the receiver. However, most concealment methods can not conceal effectively the consecutively damaged macro blocks, since the neighboring blocks are lost. In the previous work, bidirectional motion vector tracking (BMVT) method has been proposed which uses the moving trajectory feature of the damaged macro blocks. In this paper, a channel-adaptive redundancy coding method for the better BMVT error concealment is presented. The proposed method provides enhanced video quality at the cost of a little bit overhead in the wireless error-prone network.

Prefix Cuttings for Packet Classification with Fast Updates

  • Han, Weitao;Yi, Peng;Tian, Le
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1442-1462
    • /
    • 2014
  • Packet classification is a key technology of the Internet for routers to classify the arriving packets into different flows according to the predefined rulesets. Previous packet classification algorithms have mainly focused on search speed and memory usage, while overlooking update performance. In this paper, we propose PreCuts, which can drastically improve the update speed. According to the characteristics of IP field, we implement three heuristics to build a 3-layer decision tree. In the first layer, we group the rules with the same highest byte of source and destination IP addresses. For the second layer, we cluster the rules which share the same IP prefix length. Finally, we use the heuristic of information entropy-based bit partition to choose some specific bits of IP prefix to split the ruleset into subsets. The heuristics of PreCuts will not introduce rule duplication and incremental update will not reduce the time and space performance. Using ClassBench, it is shown that compared with BRPS and EffiCuts, the proposed algorithm not only improves the time and space performance, but also greatly increases the update speed.

Ethernet-Based Avionic Databus and Time-Space Partition Switch Design

  • Li, Jian;Yao, Jianguo;Huang, Dongshan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.286-295
    • /
    • 2015
  • Avionic databuses fulfill a critical function in the connection and communication of aircraft components and functions such as flight-control, navigation, and monitoring. Ethernet-based avionic databuses have become the mainstream for large aircraft owning to their advantages of full-duplex communication with high bandwidth, low latency, low packet-loss, and low cost. As a new generation aviation network communication standard, avionics full-duplex switched ethernet (AFDX) adopted concepts from the telecom standard, asynchronous transfer mode (ATM). In this technology, the switches are the key devices influencing the overall performance. This paper reviews the avionic databus with emphasis on the switch architecture classifications. Based on a comparison, analysis, and discussion of the different switch architectures, we propose a new avionic switch design based on a time-division switch fabric for high flexibility and scalability. This also merges the design concept of space-partition switch fabric to achieve reliability and predictability. The new switch architecture, called space partitioned shared memory switch (SPSMS), isolates the memory space for each output port. This can reduce the competition for resources and avoid conflicts, decrease the packet forwarding latency through the switch, and reduce the packet loss rate. A simulation of the architecture with optimized network engineering tools (OPNET) confirms the efficiency and significant performance improvement over a classic shared memory switch, in terms of overall packet latency, queuing delay, and queue size.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

Epicenter Estimation Using Real-Time Event Packet of Quanterra digitizer (Quanterra 기록계의 실시간 이벤트 패킷을 이용한 진앙 추정)

  • Lim, In-Seub;Sheen, Dong-Hoon;Shin, Jin-Soo;Jung, Soon-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.316-327
    • /
    • 2009
  • A standard for national seismological observatory was proposed on 1999. Since then, Quanterra digitizer has been installed and is operating on almost all of seismic stations which belong to major seismic monitoring organizations. Quanterra digitizer produce and transmit real-time event packet and data packet. Characteristics of event packet and arrival time of each channel's data packet on data center were investigated. Packet selection criteria using signal to noise ratio (hereafter SNR) and signal period from real-time event packet based on 100 samples per second (hereafter sps) velocity data were developed. Estimation of epicenter using time information of the selected event packet were performed and tested. A series of experiment show that event packets were received approximately 3~4 second earlier than data packets and the number of event packet was only 0.3% compare to data packets. Just about 5% against all of event packets were selected as event packet were related P wave of real earthquake. Using the selected event packets we can estimate an epicenter with misfit less than 10 km within 20 sec for local earthquake over magnitude 2.5.

Pro-active Routing Selection and Maintenance Algorithms for Mobile Ad Hoc Network Environments (이동 Ad Hoc 네트워크 환경에서 사전 활성화 라우팅 선택과 관리유지 알고리즘)

  • Cho Young-Joo;Chung Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.606-614
    • /
    • 2006
  • The conventional on-demand mobile ad hoc routing algorithms (DSR and AODV) initiate route discovery only after a path breaks, incurring a significant cost and time in detecting the disconnection and establishing a new route. In this theory, we investigate adding proposed pro-active route selection and maintenance to the conventional on-demand mobile ad hoc routing algorithms(DSR and AODV). The key idea is to be only considered likely to be a path break when the received packet power becomes close to the minimum critical power and to be generated the forewarning packet when the signal power of a received packet drops below a optimal threshold value. After generated the forewarning packet, the source node can initiate rout discovery in advance; potentially avoiding the disconnection altogether. Our extensive simulation study shows that the proposed advance-active route selection and maintenance algorithms outperforms the conventional on-demand routing protocol based on DSR and AODV in terms of packet delivery ratio, packet latency and overhead.

  • PDF

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

Distributed Collision-Resolvable Medium Access Control for Wireless LANs with Interference Cancellation Support

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2691-2707
    • /
    • 2014
  • Medium access control is critical in wireless networks for efficient spectrum utilization. In this paper, we introduce a novel collision resolution method based on the technique of known interference cancellation, and propose a new MAC protocol named as CR-MAC, in which AP tries to decode all the collided data packets by combining partial retransmissions and known interference cancellation. As the collided transmissions are fully utilized, less retransmission is required, especially in a crowded network. The NS-2simulation and MATLAB numerical results show that, under various network settings, CR-MAC performs much better than the IEEE 802.11 DCF in terms of the aggregation throughput and the expected packet delay.

New Path-Setup Method for Optical Network-on-Chip

  • Gu, Huaxi;Gao, Kai;Wang, Zhengyu;Yang, Yintang;Yu, Xiaoshan
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.367-373
    • /
    • 2014
  • With high bandwidth, low interference, and low power consumption, optical network-on-chip (ONoC) has emerged as a highly efficient interconnection for the future generation of multicore system on chips. In this paper, we propose a new path-setup method for ONoC to mitigate contentions, such as packets, by recycling the setup packet halfway to the destination. A new, strictly non-blocking $6{\times}6$ optical router is designed to support the new method. The simulation results show the new path-setup method increases the throughput by 52.03%, 41.94%, and 36.47% under uniform, hotspot-I, and hotspot-II traffic patterns, respectively. The end-to-end delay performance is also improved.

A Study on Secure Routing Protocol using Multi-level Architecture in Mobile Ad Hoc Network (Multi-level 구조를 이용한 보안 라우팅 프로토콜에 관한 연구)

  • Yang, Hwan Seok
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.17-22
    • /
    • 2014
  • Wireless Ad hoc Network is threatened from many types of attacks because of its open structure, dynamic topology and the absence of infrastructure. Attacks by malicious nodes inside the network destroy communication path and discard packet. The damage is quite large and detecting attacks are difficult. In this paper, we proposed attack detection technique using secure authentication infrastructure for efficient detection and prevention of internal attack nodes. Cluster structure is used in the proposed method so that each nodes act as a certificate authority and the public key is issued in cluster head through trust evaluation of nodes. Symmetric Key is shared for integrity of data between the nodes and the structure which adds authentication message to the RREQ packet is used. ns-2 simulator is used to evaluate performance of proposed method and excellent performance can be performed through the experiment.