• Title/Summary/Keyword: packed bed

Search Result 357, Processing Time 0.066 seconds

A Study on Preparation and Reactivity of Zinc Titanate Sorbents for H2S Removal (아연-티타늄 복합산화물 탈황제의 제조 및 반응특성 연구)

  • Kim, Ki-Seok;Park, No-Kuk;Lee, Tae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.122-131
    • /
    • 1997
  • Zinc titanate sorbents for $H_2S$ removal were prepared and their reactivities were studied for high temperature desulfurization of coal gas. Sulfidation of zinc titanates by $H_2S$ sorption was conducted in a packed-bed tubular flow reactor at the temperature range of $550{\sim}750^{\circ}C$, and the results reveal that $650^{\circ}C$ was the optimal sulfidation temperature with respect to desulfurization efficiency and zinc loss. The structural change of sorbent particle was investigated by SEM analysis for the forbents sulfided at $650^{\circ}C$ and subsequently regenerated at $750^{\circ}C$. The stability of desulfurization capability as well as the mechanical stability of the zinc titanates was studied by means of the successive cycles of sulfidation-regeneration of sorbents, and the sorbent samples taken after the 10th cycle were characterized using BET, XRD, and SEM/EDX analyses. Zinc titanate sorbents exhibited nearly constant desulfurization capability in the successive cycle operation.

  • PDF

Biosorption of Copper by Immobilized Biomass of Pseudomonas stutzeri

  • Cho, Ju-Sik;Hur, Jae-Seoun;Kang, Byung-Hwa;Kim, Pil-Joo;Sohn, Bo-Kyoon;Lee, Hong-Jae;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.964-972
    • /
    • 2001
  • The kinetics of copper ion biosorption by Pseudomonas stutzeri cells immobilized in alginate was investigated. During the first few minutes of the metal uptake, the copper biosorption was rapid and then became progressively slower until an equilibium was rapid, and then became progressively slower until an equilibrium was reached. At a biomass concentration of 100g/l, the copper biosorption reaction reached approximately 90% of the equilibrium position within 30 min. A Freundich-type adsorption isotherm model was constructed based on kinetics with different amounts of biomass. When using this model, the experimental values only agreed well with the predicted values in a solution containing less than 200 mg/l Cu(II). Desorption of the bound copper ions was achieved using electrolytic solutions of HCl, $H_2SO_4$, EDTA, and NTA (0.1 or 0.5 M). Metal desorption with 0.1 M NTA allowed the reuse of the biosorbent for at least ten consecutive biosorption/desorption cycles, without an apparent decrease in its metal biosorption capability. A packed-bed column reactor of the immobilized biomass removed approximately 95% of the metal in the first 30 liter of wastewater [containing 100 mg/l Cu(II)] delivered at a rate of 20 L/day, and, thereafter, the rate gradually decreased.

  • PDF

WASTEWATER TREATMENT USING COMBINATION OF MBR EQUIPPED WITH NON-WOVEN FABRIC FILTER AND OYSTER-ZEOLITE COLUMN

  • Jung, Yoo-Jin;Koh, Hyun-Woong;Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.247-256
    • /
    • 2005
  • A combination of the submerged membrane activated-sludge bioreactor(SMABR) equipped with non-woven fabric filter and oyster-zeolite (OZ) packed-bed adsorption column was studied to evaluate the advanced tertiary treatment of nitrogen and phosphorous. The non-woven filter module was submerged in the MBR and aeration was operated intermittently for an optimal wastewater treatment performance. Artificial wastewater with $COD_{Cr}$ of 220 mg/L, total nitrogen (T-N) of 45 mg/L, and total phosphorous (T-P) of 6 mg/L was used in this study. MLSS was maintained about $4,000\;{\sim}\;5,000\;mg/L$ throughout the experiments. The experiments were performed for 100-day with periodic non-woven filter washing. The results showed that $COD_{Cr}$ could be effectively removed in SMABR alone with over 94% removal efficiency. However, T-N and T-P removal efficiency was slightly lower than expected with SMABR alone. The permeate from SMABR was then passed through the OZ column for tertiary nutrients removal. The final effluent analysis confirmed that nutrients could be additionally removed resulting in over 87% and 46% removal efficiencies for T-N and T-P, respectively. The results of this study suggest that the waste oyster-shell can be effectively reclaimed as an adsorbent in advanced tertiary wastewater treatment processes in combination with SMABR equipped with non-woven fabric filter.

Enhancement of Ethanol Productivity by Air Supplement in Immobilized Cell Reactor System (균체고정화 생물반응기에서 산소공급에 의한 에탄올 생산성 향상)

  • 조의철;김정회;김영준
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.165-169
    • /
    • 1989
  • To achieve higher ethanol productivity in the fermentation system, a continuous ethanol production has been investigated with the air-supplement in a packed-bed immobilized cell reactor system. Yeast cells were immobilized using sodium alginate gel. The results showed that, when the feed medium was saturated with oxygen through aeration into the medium reservoir, the maximum ethanol productivity of the reactor was enhanced from 35 g/$\ell$-gel-hr to 55 g/$\ell$-gel-hr at the residence time of 10-20 min. and the residence time for the 90% conversion of substrate to ethanol was reduced from 40 min. to 25 min. In case of 18% glucose medium, the maximum productivity was increased from 35 g/$\ell$-gel-hr to 45 g/$\ell$-gel-hr and time required for 90% conversion was from 90 min to 70 min. This behavior of air-supplemented reactor system might be due to the fact that both growth and viable fraction of yeast within the Eel were increased during reactor operation.

  • PDF

Characteristics of Toluene Removal in a Biotrickling Filter with Zeolite/Polyethylene Composite Media (제올라이트/폴리에틸렌 복합 담체를 이용한 Biotrickling Filter에서 톨루엔 제거 특성)

  • Hong, Sung-Ho;Lee, Chung-Sik;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2005
  • This study was to investigate the removal characteristics of toluene in a gas stream by using a biotrickling filter packed with zeolite-contained polyethylene media. The specific surface area and the void fraction of the media were $500\;m^2/m^3$ and 82%. The surface roughness of the media was higher than that of pure polyethylene media. The toluene removal efficiency decreased with increasing the inlet toluene concentration and gas flow rate. The maximum elimination capacity of toluene in the biotrickling filter was $64\;g/m^3{\cdot}hr$. During 200 days operation, toluene removal efficiency was maintained from 90% to 98% until 167 days, hereafter, it was rapidly reduced with a rise in pressure drop due to an excess proliferation of biomass on the media. Pressure drop and removal capability of the biotrickling filter was fully recovered after backwashing.

Fabrication of Meso/Macroporous Carbon Monolith and its Application as a Support for Adsorptive Separation of D-Amino Acid from Racemates

  • Park, Da-Min;Jeon, Sang Kwon;Yang, Jin Yong;Choi, Sung Dae;Kim, Geon Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1720-1726
    • /
    • 2014
  • (S)-Alanine Racemase Chiral Analogue ((S)-ARCA) was used as an efficient adsorbent for the selective separation of D-amino acids (D-AAs), which are industrially important as chiral building blocks for the synthesis of pharmaceutical intermediates. The organic phase, containing (S)-ARCA adsorbent and phase transfer reagents, such as ionic liquid type molecules (Tetraphenylphosphonium chloride (TPPC), Octyltriphenylphosponium bromide (OTPPBr)), were coated on the surfaces of mesoporous carbon supports. For the immobilization of chiral adsorbents, meso/macroporous monolithic carbon (MMC), having bimodal pore structures with high surface areas and pore volumes, were fabricated. The separation of chiral AAs by adsorption onto the heterogeneous (S)-ARCA was performed using a continuous flow type packed bed reactor system. The effects of loading amount of ARCA on the support, the molar ratio of AA to ARCA, flow rates, and the type of phase transfer reagent (PTR) on the isolation yields and the optical purity of product D-AAs were investigated. D-AAs were selectively combined to (S)-ARCA through imine formation reaction in an aqueous basic solution of racemic D/L-AA. The (S)-ARCA coated MMC support showed a high selectivity, up to 95 ee%, for the separation of D-type phenylalanine, serine and tryptophan from racemic mixtures. The ionic liquids TPPC and OTPPBr exhibited superior properties to those of the ionic surfactant Cetyltrimethyl ammonium bromide (CTAB), as a PTR, showing constant optical purities of 95 ee%, with high isolation yields for five repeated reuses. The unique separation properties in this heterogeneous adsorption system should provide for an expansion of the applications of porous materials for commercial processes.

Removal, Recovery, and Process Development of Heavy Metal by Immobilized Biomass Methods (미생물 고정화법에 의한 중금속 제거, 회수 및 공정개발)

  • Ahn, Kab-Hwan;Shin, Yong-Kook;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 1997
  • Heavy metal adsorption by microbial cells is an alternative to conventional methods of heavy metal removal and recovery from metal-bearing wastewater The waste Sac-chuomyces cerevisiae is an inexpensive, relatively available source of biomass for heavy metal biosorption. Biosorption was investigated by free and immobilized-S. cerevisiae. The order of biosorption capacity was Pb>Cu>Cd with batch system. The biosorption parameters had been determined for Pb with free , cells according to the Freundlich and Langmuir model. It was found that the data fitted reasonably well to the Freundlich model. The selective uptake of immobilized-S. cerevisiae was observed when all the metal ions were dissolved in a mixed metals solution(Pb, Cu, Cr and Cd). The biosorption of mixed metals solution by immobilized-cell was studied in packed bed reactor. The Pb uptake was Investigated in particular, as it represents one of the most widely distributed heavy metals in water. We also tested the desorption of Pb from immobilized-cell by us- ing HCI, $H_2SO_4$ and EDTA.

  • PDF

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

Characteristics of Nano Particle Precipitation and Residual Ozone Decomposition for Two-Stage ESP with DBD (배리어 유전체 방전형 2단 전기집진기의 나노입자 집진 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Ji, Jun-Ho;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1678-1683
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Although DBD high electron density and energy, its potential use as nano and sub-micron sized particle charging are not well known. Aim of this work is to determine design and operating parameters of a two-stage ESP with DBD. DBD and ESP are used as particle charger and precipitator, respectively. We measured particle precipitation efficiency of two-stage ESP and estimated ozone decomposition of both pelletized $MnO_2$ catalyst and pelletized activated carbon. To examine the particle precipitation efficiency, nano and sub-micron sized particles were generated by a tube furnace and an atomizer. AC voltage of $7{\sim}10$ kV(rms) and 60 Hz is used as DBD plasma source. DC -8 kV is applied to the ESP for particle precipitation. The overall particle collection efficiency for the two-stage ESP with DBD is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized $MnO_2$ catalyst or pelletized activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

  • PDF

Effects of activated carbon packing length in PSA process for production of high-purity hydrogen (고순도 수소제조를 위한 PSA 공정에서 활성탄 충전길이 효과)

  • Paik, Eun-gyu;Choi, Min-Ho;Suh, Sung-Sup
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • The effects of activated-carbon (AC) packing length on the Pressure Swing Adsorption (PSA) performance was investigated for the hydrogen separation from the multicomponent mixture gas. Linear driving force model was used to describe mass transfer between two phase and coupled Langmuir isotherm was used for each component as a nonlinear adsorption isotherm. When two adsorbents with a different adsorption capacity were packed consecutively in one bed, it is very important to determine the packing ratio of zeolite to activated carbon affecting the purity and recovery of the product. The activated carbon packing length in adsorption tower of 120 cm was determinated by the ending point of $CO_2$ contration. The optimum length of an activated carbon layer was 65 cm for production of high-purity hydrogen.

  • PDF