• Title/Summary/Keyword: pKH6

Search Result 219, Processing Time 0.026 seconds

SCP Production from Mandarin Orange Peel Press Liquor (감귤과피 압착액을 기질로 한 SCP 생산)

  • 강신권;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.556-562
    • /
    • 1989
  • The bioconversion of mandarin orange peel press liquor to single cell protein (SCP) by two yeast strains, F-60, and C-7, which were isolated from mandarin orange peel was carried out and compared with that of using Candida utilis IFO 0598. Experiments were directed toward the high yield of biomass and high protein in cultures of the strains mentioned above. Candida utilis IFO 0598, F-60 and C-7 strains were cultivated at 3$0^{\circ}C$, pH 5.2 for 3 days in shaking flasks. The effects of some nutrients on cell growth were studied. Cell mass and protein content per cell mass were increased by addition of urea 1%, KH$_2$PO$_4$ 0.1% and MgSO$_4$ㆍ7$H_2O$ 0.05%, When the F-60 strain cultured under the optimal conditions, cell mass, growth yield and protein content were 41.2g/l, 53.9%, 59.7%, respectively. Cell mass was also increased up to 15% by modifying the fermentation condition on the bench type 20l jar fermentor. Crude fat content (10.3%) of dried C-7 cell was higher than those of C. utilis and F-60, 4.9% and 5.6% respectively. Total protein content of the F-60 strain was 59.7% per dry weight. And we compared their amino acid compositions with that of FAO provisional pattern. In the case of the F-60 strains, amino acid contents such as lysine, leucine and isoleucine were much higher than those of methionine, cystine and tryptophan.

  • PDF

식초산 발효에 관한 연구

  • 조석금;정동효
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.248.2-248
    • /
    • 1979
  • 식초산 발효 실험을 통하여 다음과 같은 결과를 얻었다. 1. 자연에서 초산균 52균주를 분리하고 그중 식초산 농도 5.5% 이상되는 초산균 CAU-4, CAU-15, CAU-17, CAU-46, 4균주를 선별하였다. 2. 정치배양과 진탕배양을 실시한 결과 산생성랑은 진탕배양에서 월등한 효과를 보였다. 3. 유기태 질소원의 첨가시 peptone을 0.4%까지 증가를 보였고, yeast extract는 0.1~0.2%가 최적량이고 그 이상은 산량이 감소되었다. 4. $NH_4NO_3의$ 자화성을 조사한 결과 CAU-17만이 자화하지 못하였고, 무기태 질소원으로서는 $(NH_2)_2CO가$ 가장 좋았다. 5. 무기염류는 $KH/_2PO_4,$ $MgSO_4.7H_2$ O 0~0.1% 첨가하여 약간의 효과를 보았다. 6. Glucose의 첨가량별 산량의 증가는 0.25% 첨가시 0% 첨가시 보다 증가를 보인 반면 1% 첨가시는 오히려 감소하였다. 7. 초발 alcohol농도가 낮을수록 유도기와 대수기가 단축되며 10%이상에서는 4균주 모두 산을 생성하지 못하였다. 8. 초발산도가 높을 경우 유도기가 길어지고 산생성량이 줄어 들었다. 9. 초산균의 배양온도는 $30^{\circ}C,$ $35^{\circ}C에서$ 산생성 속도가 가장 빨랐다. 10. 발효시 산생성량에 따른 세균수의 증가는 접종후 2~3일 사이에 가장 많았다. 11. 초산의 증가와 더불어 균체량은 증가하였고 pH는 약간색 감소하나 PH는 2.5이하로는 내려가지 않았다. 12. alcohol 잔량은 발효 개시 후 5 ~6일의 정지기에 가장 낮았다.

  • PDF

Immobilization of Lum,brokinase on the Surface of Polyurethane by using the Photoreactive Poly(acrylic acid) (광반응성 poly(acrylic acid)를 이용한 Lumbrokinase 의 polyurethane 표면 고정화 방법에 관한 연구)

  • 김현정;류은숙;김종원;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.547-553
    • /
    • 1999
  • 생체재료로 사용되는 polyurethane(PU) 표면에 항혈전성 lumbrokinase(LK)를 고정함으로써 생체적합성을 향상시키고자하였다. 먼저 LK를 PU 표면에 고정하기 위한 가교제로서 4-azidoaniline hydrochloride와 poly(acrylic acid)를 이용하여 4-azidophenyl 작용기가 amido 결합으로 치환된 수용성, 광반응성 poly(acrylic acid)(PPa-II)를 합성하였다. H-nuclear magnetic reasonance spectrum(500MHz H-NMR)의 6-7 peak와 infrared spectrum (FT-IR) 의 2125.48 cm peak으로부터 PPA-II의 합성을 지원하였다. EH한 4-azidophenyl 작용기가 poly(acrylid acid) 잔기에 치환된 정도는 UV/VIS adpectrophotometric spectrum을 확인한 결과 11~14%임을 알 수있었다. 0.5 1및 5% PPA-II를 각각 광반응하여 얻은 PU는 39.5, 161.8 및 181.5 nmole/$\textrm{cm}^2$의 농도로 표면에 carvoxyl 작용기가 유도되었음을 알 수있었다. 0.05M KH2PO4 (pH 4.5) 용액에서 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide(EDC)를 촉매로 사용하여 LK를 PU표면에 amido 공유결합으로 고정하였으며, 이것은 지속적인 fibrinolytic 활성도를 보였다. PPA-II를 이용한 표면 개질 방법은 수용성 반응조건에서 이루어진다는 점과 광반응을 이용함으로써 특정부위에서의 표면개질이 가능하다는 점에서 그 응용가치가 크며 아울러 PU의 생체적합성을 향상시킬 수 있는 방법으로서 판단된다.

  • PDF

Development of a Selective Medium for Xanthomonas campestris pv. translucens (맥류 세균성줄무늬병균의 선택배양기 개발)

  • ;David C. Sands
    • Korean Journal Plant Pathology
    • /
    • v.12 no.4
    • /
    • pp.381-388
    • /
    • 1996
  • 맥류세균성 줄무늬병균의 선택배양기(KM-1)를 개발하여 이병식물체 및 토양으로부터 Xanthomonas campestris pv. translucens를 선택적으로 분리할 수 있는 효율성을 검토하였다. KM-1배양기의 구성성분은 증류수 1 L당 lactose 10 g, D(+)trehalose 4.0 g, thiobarbituric acid 0.2 g, K\ulcornerHPO\ulcorner 및 KH\ulcornerPO\ulcorner 각각 0.8 g, yeast extract 30 mg, NH\ulcornerCl 1 g, cycloheximide 100 mg, tobramycin 8.0 mg, ampicillin 1.0 mg 및 Bacto agar 15 g이며 1 N NaOH로 pH 6.6으로 조절하였다. X. c. t.의 균주별 KM-1의 배양효율은 비선택성 농후배지인 Wilbrinks agar에 비하여 1.30정도였으며, 기타 토양전염성식물병원세균 Agrobacterium tumefaciens, Agrobacterium rhizogenes, Erwinia carotovora var. atroseptica, Erwinia carotovora var. carotovora, Corynebacterium insidiosum, 및 기타 토양생존 부생세균 Bacillus cereus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Pseudomonas putida 등의 생장을 완벽하게 억제하였다. KM-1의 저장기간(shelf-life)도 5$^{\circ}C$에서 2개월 동안 선택성을 유지하였다. 따라서 본 병원균의 전염원의 생존 등 발생생태연구에 활용될 수 있는 가치가 충분히 인정되었다.

  • PDF

Physiological Responses to Mineral-Excessive Conditions: Mineral Uptake and Carbohydrate Partitioning in Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kang, Seongsoo;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.563-570
    • /
    • 2014
  • The shortage or surplus of minerals directly affects overall physiological metabolism of plants; especially, it strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake, synthesis and partitioning of soluble carbohydrates, and the relationship between them in N, P or K-excessive tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with excessive N ($20.0mmol\;L^{-1}$ $Ca(NO_3)2{\cdot}4H_2O$ and $20.0mmol\;L^{-1}$ $KNO_3$), P ($2.0mmol\;L^{-1}$ $KH_2PO_4$), and K ($20.0mmol\;L^{-1}$ $KNO_3$), respectively, for 30 days. Shoot growth rates were significantly influenced by excessive N or K, but not by excessive P. The concentrations of water soluble N (nitrate and ammonium), P and K were clearly different with each tissue of tomato plants as well as the mineral conditions. The NPK accumulation in all treatments was as follows; fully expanded leaves (48%) > stem (19%) = roots (16%) = petioles (15%) > emerging leaves (1). K-excessive condition extremely contributed to a remarkable increase in the ratio, which ranged from 2.79 to 10.34, and particularly potassium was dominantly accumulated in petioles, stem and roots. Fresh weight-based soluble sugar concentration was the greatest in NPK-sufficient condition ($154.8mg\;g^{-1}$) and followed by K-excessive (141.6), N-excessive (129.2) and P-excessive (127.7); whereas starch was the highest in K-excessive ($167.0mg\;g^{-1}$) and followed by P-excessive (146.1), NPK-sufficient (138.2) and N-excessive (109.7). Soluble sugar showed positive correlation with dry weight-based total N content (p<0.01) whereas was negatively correlated with soluble P (p<0.01) and dry weight-based total P (p<0.01). On the other hand, starch production was negatively influenced by total N (p<0.001), but, it showed positive relation with total K concentration (p<0.05). This study shows that uptake pattern of NPK and production and partitioning of soluble carbohydrate were substantially different from each mineral, and the relationship between water soluble- and dry weight-based-mineral was positive.

Studies of Cultural Condition on the Mycelial Vegetative Growth in Naematoloma sublateritium (Fr.) Karst. (개암버섯의 균사생장(菌絲生長)에 영향을 미치는 배양조건(培養條件)에 관한 연구(硏究))

  • Kang, An-Seok;Cha, Dong-Yeol;Hong, In-Pyo;Chang, Hyun-Yoo;Yu, Seung-Hun
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.153-159
    • /
    • 1994
  • Effects of some sources on the vegetative growth of Naematoloma sublateritium (Fr.) Karst. were investigated using liquid and solid culture media. Temperature, pH, carbohydrates as carbon sources, amino acids as nitrogen sources, the optimal carbon/nitrogen ratio, mineral element and organic acids were studied for good mycelial growth. We could improve a new semisynthetic medium for mycelial growth in N. sublateritium.

  • PDF

Optimization of Culture Condition of Nocardia sp. L-417 Strain for Biosurfactant Production (Biosurfactant의 생산을 위한 Nocardia sp. L-417균주의 배양조건 최적화)

  • 이태호;김순한;임이종
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.252-258
    • /
    • 1998
  • The strain producing biosurfactant was isolated from soil smples. The isolated strain was identified as the genus Nocardia through its morphological, cultural and physiolgical characteristics. A high concentration of the biosurfactant by Nocardia sp. L-417 was obtained after 4 days of cultivation in the culture medium containing 3% n-hexadecane, 0.1% $NaNO_3$, 0.02% $K_2HOP_4$, 0.01% $H_2PO_4$, 0.01% $MgSO_4$.$7H_2O$, 0.01% $CaCl_2$, 0.02% yeast extract, and 0.02% tryptone. The optimum pH and temperature for biosurfactant production were pH 6.0 and $30^{\circ}C$, respectively. Furthermore, most biosurfactans were produced during the exponential growth phase, and this fact indicated that the biosurfactans production was growth-associated. The biosurfactant showed the good emulsification activities on various emulsifying substrates such as bunker A, paraffin, corn oil which are used widely in industries.

  • PDF

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity (난분해성 우모분해 Pseudomonas geniculata에 의한 케라틴 분해효소 생산 및 식물성장 촉진 활성)

  • Go, Tae-Hun;Lee, Sang-Mee;Lee, Na-Ri;Jeong, Seong-Yun;Hong, Chang-Oh;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1457-1464
    • /
    • 2013
  • We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Purification and Characterization of Bacillus subtilis JS-17 Collagenase. (Bacillus subtilis JS-17이 생산하는 Collagenase의 정제 및 특성)

  • Lim Kyoung-Suk;Son Shung-Hui;Kang Ho Young;Jun Hong-Ki
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.657-663
    • /
    • 2005
  • Collagenases are generally defined as enzymes that are capable of degrading the polypeptide backbone of native collagen under conditions that do not denature the protein. An extracellular collagenase-producing bacterial strain was isolated from kimchi and identified to be Bacillus subtilis JS-17 through morphological, cultural, biochemical characteristics and 16S rDNA sequence analysis. Optimum culture condition of Bacillus subtilis JS-17 for the production of collagenase was $1.5\%$ fructose, $1\%$ yeast extract, $0.5\%\;K_2HPO_4,\;0.4\%\;KH_2PO_4,\;0.01\%\;MgSO_4\cdot7H_2O,\;0.01\%\; MnSO_4\cdot4H_2O,\;,0.1\%$ citrate and $0.1\%\;CaCl_2$. The production of collagenase was optimal at $30^{\circ}C$ for 72 hr. A collagenase was isolated from the culture filtrate of Bacillus subtilis JS-17. The enzyme was purified using Amberlite IRA-900 column chromatography, Sephacryl S-300 HR column chromatography and DEAE-Sephadex A-50 column chromatography The purified collagenase has an specific activity 192.1 units/mg. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PACE. The purified collagenase has $100\%$ activity up to $55^{\circ}C$.