• Title/Summary/Keyword: pH-sensitive

Search Result 914, Processing Time 0.025 seconds

Micro humidity sensor with poly imide sensitive layer (폴리이미드를 감지막으로 한 마이크로 정전용량형 습도센서)

  • Shin, P.K.;Cho, K.S.;Park, G.B.;Yuk, J.H.;Park, J.K.;Im, H.C.;Ji, S.H.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1898-1899
    • /
    • 2005
  • 반도체 집적회로 공정에서 사용되는 폴리이미드 포토레지스트(P12723, Dupont)를 감습막으로 사용하는 마이크로 습도센서 소자를 제작하였다. 마이크로 습도센서는 실리콘 웨이퍼 기판 위에 $SiO_2$ 박막을 건식열산화 공정으로 제작하고, Al 박막을 포토리소그라피 공정으로 패터닝 한 IDT (Interdigital Transducer)를 전극 위에 폴리이미드 포토레지스트를 공정변수를 다양하게 조절하면서 감습막으로 제작하였다. 폴리이미드 감습막은 스핀코팅법으로 제작하였으며, 회전수를 조절하여 두께를 변화시켰다. 완성된 마이크로 습도센서 소자의 상대습도 변화$(10{\sim}90% RH)$에 따른 정전용량 값 변화를 항온항습조 내에서 다양한 온도에서 HP4192A Impedance Analyzer를 사용하여 조사함으로써, 폴리이미드 포토레지스트를 사용하는 마이크로 정전용량형 습도센서의 제작 가능성을 검토하였다. 폴리이미드 정전용량형 마이크로 습도센서는 다양한 인가 전원 주파수에서 기준 센서로 사용된 상용 Vaisala Hygrometer와 유사한 감습특성 및 응답특성을 보였다.

  • PDF

Phenotypic Stability of a Temperature-Controllable Expression Vector on Phenylalanine Production by Escherichia coli (대장균을 이용한 Phenylalanine 생산에 있어서 온도조절형 발현 Vector의 안정성)

  • 강상모;박인숙
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.433-438
    • /
    • 1991
  • The plasmid pSY130-14 for the high production of phenylalanine is a temperaturecontrollable expression vector composed of the $P_R$ and the $P_L$ promoter and a temperature sensitive repressor, $cI_{857}$ of bacteriophage lambda. Strain AT2471 harbouring plasmid pSY13O- 14 is induced the phenylalanine production by shifting up the incubation temperaure to $38.5^{\circ}C$. Plasmid stability of E. coli AT2471 harbouring pSY130-14 was very low, it was about 30% after 48 h cultivation at $38.5^{\circ}C$ without kanamycin. The plasmid disappeared immediately at $40^{\circ}C$ without kanamycin, and at $40^{\circ}C$ adding kanamycin, the plasmid stability decreased at the beginning, but rose with the extension of the culture time. For the improvement of plasmid stability, the plasmid obtaind was designated as pSY15O-1 by changing origin region (ori) pACYC 177 of pSY130-14 for ori pSC101. E. coli AT2471 harbouring pSY150-1 was stable at $38.5^{\circ}C$ without tetracycline, and the plasrnid stability was about 40% after 48 h cultivation at $40^{\circ}C$.

  • PDF

Enzymatic and Energetic Properties of an Aerobic Respiratory Chain­Linked NADH Oxidase System in Marine Bacterium Vibrio natriegens

  • Kang, Ji-Won;Kim, Young-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • Membranes prepared from Vibrio natriegens oxidized both NADH and deamino-NADH as substrates. The maximum activity of the membrane-bound NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl, whereas that of the NADH:ubiquinone oxidoreductase was obtained at about pH 7.5 in the presence of 0.2 M NaCl. Electron transfer from NADH or deamino-NADH to ubiquinone-l or oxygen generated a considerable membrane potential (${\Delta}{\psi}$), which occurred even in the presence of $20{\mu}M$ carbonylcyanide m-chlorophenylhydrazone (CCCP). However, the ${\Delta}{\psi}$ was completely collapsed by the combined addition of $10{\mu}M$ CCCP and $20{\mu}M$ monensin. On the other hand, the activity of the NADH oxidase and the ${\Delta}{\psi}$ generated by the NADH oxidase system were inhibited by about $90\%$ with $10{\mu}M$ HQNO, whereas the activity of the NADH:ubiquinone oxidoreductase and the ${\Delta}{\psi}$ generated at the NADH:ubiquinone oxidoreductase segment were inhibited by about $60\%$. Interestingly, the activity of the NADH:ubiquinone oxidoreductase and the ${\Delta}{\psi}$ generated at the NADH:ubiquinone oxidoreductase segment were resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$, and the activity of the NADH oxidase and the ${\Delta}{\psi}$ generated by the NADH oxidase system were very sensitive only to $AgNO_3$. It was concluded, therefore, that V. natriegens cells possess a $AgNO_3$-resistant respiratory $Na^+$ pump that is different from the $AgNO_3$-sensitive respiratory $Na^+$ pump of a marine bacterium, Vibrio alginolyticus.

High-k 적층 감지막(OA, OH, OHA)을 이용한 SOI 기판에서의 고성능 Ion-sensitive Field Effect Transistor의 구현

  • Jang, Hyeon-Jun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.152-153
    • /
    • 2012
  • Ion sensitive field effect transistor (ISFET)는 전해질 속 각종 이온농도를 측정하는 반도체 이온 센서이다. 이 소자의 기본 구조는 metal oxide semiconductor field effect transistor (MOSFET)에서 고안되었으며 게이트 컨택 부분이 기준전극과 전해질로 대체되어진 구조를 가지고 있다 [1]. ISFET는 기존의 반도체 CMOS 공정과 호환이 가능하고 제작이 용이할 뿐만 아니라, pH용액에 대한 빠른 반응 속도, 비표지 방식의 생체물질 감지능력, 낮은 단가 및 소자의 집적이 용이하다는 장점을 가지고 있다. ISFET pH센서의 감지특성에 결정하는 요소 중 가장 중요한 것은 소자의 감지막이라고 할 수 있다. 감지막은 감지 대상 물질과 물리적으로 직접 접촉되는 부분으로서 일반적으로 기계적/화학적 강도가 우수한 실리콘 산화막(SiO2)이 많이 사용되어져 왔다. 최근에는 기존의 SiO2 보다 성능이 향상된 감지막을 개발하기 위하여 Al2O3, HfO2, ZrO2, 그리고 Ta2O5와 같은 고유전 상수(high-k)를 가지는 물질들을 EIS 센서의 감지막으로 이용하는 연구가 활발하게 진행되고 있다. 하지만 지속적인 high-k 물질들에 대한 연구에도 불구하고 각각의 물질이 갖는 한계점이 드러났다. 본 연구에서는 SOI기판에서 SiO2 /HfO2 (OH), SiO2/Al2O3 (OA) 이단 적층 그리고 SiO2/HfO2/Al2O3 (OHA) 삼단적층 감지막을 갖는 ISFET을 제작하고 각 감지막의 특성을 평가하였다. 평가된 특성의 결과가 아래의 표1에 요약되었다. 그 결과, 각 high-k 물질이 갖는 한계점을 극복하기 위하여 제안된 OHA감지막은 기존에 OH, OA가 갖는 장점을 취하면서 단점을 최소화 시키는 최적화된 감지막의 감지특성을 보였다.

  • PDF

Antibacterial activity of supernatant obtained from Weissella koreensis and Lactobacillus sakei on the growth of pathogenic bacteria

  • Im, Hana;Moon, Joon-Kwan;Kim, Woan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • This study was carried out to obtain basic data for the industrial use of Weissella koreensis and Lactobacillus sakei. The antibacterial activity of supernatants obtained from W. koreensis and L. sakei were tested against pathogenic bacteria such as Escherichia coli KCCM 11234, Salmonella enteritidis KCCM 3313, Salmonella enteritidis KCCM 12021, Salmonella typhimurium KCCM 40253, and Salmonella typhimurium KCCM 15. The supernatant of L. sakei showed antibacterial activity against E. coli KCCM 11234, S. enteritidis KCCM 12021, and S. typhimurium KCCM 15, while the supernatant of W. koreensis showed antibacterial activity against E. coli KCCM 11234 and S. enteritidis KCCM 12021. The effect of pH changes and heat treatment on antibacterial activity of the supernatants was examined using the sensitive pathogenic bacteria (E. coli KCCM 11234, S. enteritidis KCCM 12021 and S. typhimurium KCCM 15). Antibacterial activity against sensitive pathogenic bacteria was maintained under heat treatment at all temperatures, but there was no antibacterial activity associated with pH modification. Furthermore, it was confirmed that the antibacterial activity of the supernatants obtained from W. koreensis and L. sakei was a result of organic acids including, lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, and formic acids. Therefore, the present study showed that the organic acids produced by L. sakei and W. koreensis exhibited a strong antibacterial activity against pathogenic bacteria. Moreover, in the food industry, these organic acids have the potential to inhibit the growth of pathogenic bacteria and improve the quality of stored food.

Plasmid-associated Bacteriocin Production by Leuconostoc sp. LAB145-3A Isolated from Kimchi

  • Choi, Yeon-Ok;Ahn, Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.409-416
    • /
    • 1997
  • Leuconostoc sp. LAB145-3A isolated from kimchi produced a bacteriocin which was active against food pathogens, such as Listeria monocytogenes, Enterococcus faecalis, and E. faecium. Bacteriocin production occurred during the early exponential phase of growth and was stable upto the late stationary phase of growth. Optimum conditions for bacteriocin production were $37^{\circ}C$ with an initial pH of 7.0. The bacteriocin of LAB145-3A was sensitive to proteases, but stable for solvents, pH change and heat treatment. It was stable even at autoclaving temperature for 15 min. The bacteriocin exhibited a bactericidal mode of action against Lactobacillus curvatus LAB170-12. The bacteriocin produced by Leuconostoc sp. LAB145-3A was purified by CM-cellulose cation exchange column chromatography and Sephadex G-50 gel filtration. The purification resulted in an approximate 10,000-fold increase in the specific activity. Approximately 4% of the initial activity was recovered. Purified bacteriocin exhibited a single band on the SDS-PAGE with an apparent molecular weight of 4,400 daltons. This bacteriocin was named leucocin K. Leuconostoc sp. LAB145-3A had two residential plasmids with molecular sizes of 23 kb and 48 kb. A comparison of plasmid profiles between LAB145-3A and its mutants revealed that the 23 kb plasmid (pCA23) was responsible for bacteriocin production and immunity to the bacteriocin in Leuconostoc sp. LAB145-3A.

  • PDF

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.

Charaterization of Nisin Production and Resistance of Lactococcus lactis ssp. lactis $ML_8$ (Lactococcus lactis ssp. lactis $ML_8$의 Nisin 생산 및 저항 특성)

  • 김등양;이형주
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.619-623
    • /
    • 1991
  • To investigate nisin production and resistance of Lactococcus lactis ssp. tactis ML (L. lactis $ML_8$, effects of medium, pH of culture broth, and cell growth on the nisin activity, and effect of nisin with or without $Ca^[2+}$ ion on the growth of L. lactzs were analyzed. In the bio-assay of nisin by the agar diffusion method, inhibition-zone diameter of Micrococcus Javus was propotional to the logarithm of nisin concentration ranged 0.5~20 unitlml (12.5~500 ng/mf). Nisin activity of the pasteurized culture filtrates of L. lactis MLs was high at pH 2!3 but was inactivated completely at pH over 6.0. Nisin production of the L. lactis $ML_8$ cultured on LTB broth increased at late logarithmic phase and reached 10.5 unitlml after 16 hr. The cell growth of L. lactis LM 0230, a plasmid free and nisin sensitive strain, was inhibited on agar medium containing 7 unitlrnl of nisin, while L. lactis $ML_8$ showed high survival ability at 20 unitld of nisin. When 40 mM $Ca^[2+}$ ion was added to Elliker broth with 8 unitlml of nisin, the growth pattern of L. lactis $ML_8$ was similiar to that on control medium which did not contain nisin and $Ca^[2+}$ ion, and this suggested that $Ca^[2+}$ increased the nisin resistance of the L. lactis.

  • PDF

Cyanobacterial Diversity Shifts Induced by Butachlor in Selected Indian Rice Fields in Eastern Uttar Pradesh and Western Bihar Analyzed with PCR and DGGE

  • Kumari, Nidhi;Narayan, Om Prakash;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.

Enzymological Properties of the Alkaline AL-Protease from Arthrobacter luteus and Detection of Its Active Amino Acid Residue (Arthrobacter luteus로부터 유래한 염기성 AL-Protease의 효소학적 성질 및 활성 아미노산 잔기의 검색)

  • Oh, Hong-Rock;Aizono, Yasuo;Funatsu, Masaru
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.2
    • /
    • pp.193-204
    • /
    • 1984
  • The enzymatic properties of the alkaline AL-protease, which had been prepared from the crude zymolyase of Arthrobzoter luteus, was investigated together with its active amino acid residue. Complete inactivaton of the proteolytic activity of AL-protease by either DFP or PMSF was simultaneously accompanied by the loss of its lytic effect on the lysis of yeast cell wall. In the reaction, AL-protease showed the pattern of inactivation to decrease very slowly, as compared to that of chymotrypsin, and that enzyme and DFP were found to react with a molar ratio of 1 : 1. The preparation of AL-protease exhibited no hydrolytic activity in any substrates of polysaccharases, playing a significant role in the lysis of yeast cell wall. The optimum pH and temperature of AL-protease was pH 10.5 and $65^{\circ}C$, respectively. It also showed stability in the pH range from 5 to 11 and at the temperature below $65^{\circ}C$. Through the identification of the amino acid residue in the active site of the $^{32}P$-diisopropylph-osphorylated(DIP) AL-protease modified specifically with $^{32}P$-labeled DFP, AL-protease was found to be a DFP-sensitive which has a mole of active serine residue involved in its proteolytic activity per mole of the enzyme.

  • PDF