• Title/Summary/Keyword: pH optimum

Search Result 4,192, Processing Time 0.038 seconds

A study on the Degradation and By-products Formation of NDMA by the Photolysis with UV: Setup of Reaction Models and Assessment of Decomposition Characteristics by the Statistical Design of Experiment (DOE) based on the Box-Behnken Technique (UV 공정을 이용한 N-Nitrosodimethylamine (NDMA) 광분해 및 부산물 생성에 관한 연구: 박스-벤켄법 실험계획법을 이용한 통계학적 분해특성평가 및 반응모델 수립)

  • Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.33-46
    • /
    • 2010
  • We investigated and estimated at the characteristics of decomposition and by-products of N-Nitrosodimethylamine (NDMA) using a design of experiment (DOE) based on the Box-Behken design in an UV process, and also the main factors (variables) with UV intensity($X_2$) (range: $1.5{\sim}4.5\;mW/cm^2$), NDMA concentration ($X_2$) (range: 100~300 uM) and pH ($X_2$) (rang: 3~9) which consisted of 3 levels in each factor and 4 responses ($Y_1$ (% of NDMA removal), $Y_2$ (dimethylamine (DMA) reformation (uM)), $Y_3$ (dimethylformamide (DMF) reformation (uM), $Y_4$ ($NO_2$-N reformation (uM)) were set up to estimate the prediction model and the optimization conditions. The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were $Y_1$ [% of NDMA removal] = $117+21X_1-0.3X_2-17.2X_3+{2.43X_1}^2+{0.001X_2}^2+{3.2X_3}^2-0.08X_1X_2-1.6X_1X_3-0.05X_2X_3$ ($R^2$= 96%, Adjusted $R^2$ = 88%) and 99.3% ($X_1:\;4.5\;mW/cm^2$, $X_2:\;190\;uM$, $X_3:\;3.2$), $Y_2$ [DMA conc] = $-101+18.5X_1+0.4X_2+21X_3-{3.3X_1}^2-{0.01X_2}^2-{1.5X_3}^2-0.01X_1X_2+0.07X_1X_3-0.01X_2X_3$ ($R^2$= 99.4%, 수정 $R^2$ = 95.7%) and 35.2 uM ($X_1$: 3 $mW/cm^2$, $X_2$: 220 uM, $X_3$: 6.3), $Y_3$ [DMF conc] = $-6.2+0.2X_1+0.02X_2+2X_3-0.26X_1^2-0.01X_2^2-0.2X_3^2-0.004X_1X_2+0.1X_1X_3-0.02X_2X_3$ ($R^2$= 98%, Adjusted $R^2$ = 94.4%) and 3.7 uM ($X_1:\;4.5\;$mW/cm^2$, $X_2:\;290\;uM$, $X_3:\;6.2$) and $Y_4$ [$NO_2$-N conc] = $-25+12.2X_1+0.15X_2+7.8X_3+{1.1X_1}^2+{0.001X_2}^2-{0.34X_3}^2+0.01X_1X_2+0.08X_1X_3-3.4X_2X_3$ ($R^2$= 98.5%, Adjusted $R^2$ = 95.7%) and 74.5 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;3.1$). This study has demonstrated that the response surface methodology and the Box-Behnken statistical experiment design can provide statistically reliable results for decomposition and by-products of NDMA by the UV photolysis and also for determination of optimum conditions. Predictions obtained from the response functions were in good agreement with the experimental results indicating the reliability of the methodology used.

Studies on the Changes in Chemical Composition and Microbiological Aspects of Raw Milk by Microwave Heating (Microwave 열처리에 의한 원유의 화학적 및 미생물학적 성상의 변화에 관한 연구)

  • Shin, Byeong Hong;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.181-198
    • /
    • 1998
  • In order to determine the optimum pasteurization conditions by microwave heating(MWH) at $50^{\circ}C{\sim}70^{\circ}C$ for 30 minute compared with water bath heating(WBH) at $65^{\circ}C$ for 30minute during storage at $5^{\circ}C$, the chemical composition, microbiological changes and keeping quality were examined and the results were as follows: 1. The fat protein lactose, total solid contents of raw milk, at $50{\sim}70^{\circ}C$ for 30 min. in MWH and at 65 for $30^{\circ}C$ min. in WBH did not changed significantly during the storage at $5^{\circ}C$. 2. The pH and acidity for the raw milk untreated were 6.75 and 0.16%, and those of MWH heated and WBH milk wee 6.75~6.50 and 0.16%~0.19%, phosphatase test were negative at $61^{\circ}C$ for 20 min. at $62^{\circ}C$ for 15 min. at $63^{\circ}C$ for 10 min. at $64^{\circ}C$ for 5 min. at $65^{\circ}C$ for 5 min. in MWH and at $65^{\circ}C$ for 30 min. in WBH. 3. Whey protein content was $18.53mg/m{\ell}$ in raw milk untreated, however, those were decreased as the heating temperature increased. The proteolytic activity of treated milk by WBH(44%) was lower than that by MWH(94%). 4. Total bacteria counts were $2.8{\times}10^5CFU/m{\ell}$ in raw milk untreated, $2.8{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $2.4{\times}10^3CFU/m{\ell}$ at $70^{\circ}C$ for 30 min. in MWH and $3.0{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. in WBH. Because total bacteria count did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30 min. and $65^{\circ}C$ for 30 min. in WBH during the 10 days storaging, Also, total bacteria counts for treated milk were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 5. Coliform bacteria counts were $2.6{\times}10^3CFU/m{\ell}$ in raw milk untreated. There were not detected at $55^{\circ}C{\sim}70^{\circ}C$ for 30 min. in MWH and at $65^{\circ}C$ for 30 min. in WBH. Coliform bacteria counts were not detected after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 6. Thermoduric bacteria counts were $5.2{\times}10^4CFU/m{\ell}$ in raw milk untreated, $2.0{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $1.9{\times}10^3CFU/m{\ell}$ at $70^{\circ}C$ for 30min. in MWH and $2.2{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. in WBH. Because thermoduric bacteria counts did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30 min. and $65^{\circ}C$ for 30 min. in WBH during the 10days storaging. Also, thermoduric bacteria counts were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 7. Psychrotrophic bacteria counts were $2.8{\times}10^5CFU/m{\ell}$ in raw milk untreated, $2.0{\times}10^1CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $2.0{\times}10^1CFU/m{\ell}$ at $70^{\circ}C$ for 30 min. in MWH and $3.0{\times}10^1CFU/m{\ell}$ at $65^{\circ}C$for 30 min. in WBH. Because psychrotrophic bacteria counts did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30min. and $65^{\circ}C$ for 30 min. in WBH during the 10 days storaging. Also, psychrotrophic bacteria counts were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH.

  • PDF

Studies on the Amylase Production by Bacteria (세균(細菌)에 의(依)한 Amylase생산(生産)에 관한 연구(硏究))

  • Park, Yoon-Joong
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 1970
  • 1. Isolation and identification of amylase-producing bacteria. The powerful strain A-12 and S-8 were respectively isolated from air and soil after screening a large number of amylase-producing bacteria. Their bacterial characteristics have been investigated and it has been found that all characteristics of strain A-12 and S-8 are similar to Bac. subtilis of Bergey's manual except for the acid formation from a few carbohydrates and the citrate utilization, i.e., the strain A-12 shows negative in the citrate utilization, and the acid formation from arabinose and xylose, S-8 shows negative in the acid formation from xylose. 2. Amylase production by Liquid cultures with solid materials. Several conditions for amylase production by strain A-12 in stationary cultures have been studied. The results obtained are as follows. (1) The optimum conditions are:temperature $35^{\circ}C$, initial pH 6.5 to 7.0 and incubation time 3 to 4 days. (2) The amylase production is not affected by the preservation period of the stock cultures. (3) Among the various solid material, the defatted soy bean is found to be the best for t1e amylase production. However, the alkali treatment of the defatted soy bean gives no effect contrary to the cage of defatted rape seed. The addition of soluble starch to the alkali extract of defatted soy bean shows the increased amylase production. (4) Up to 1% addition of ethanol to carbon dificient media gives the improved amylase production, whereas the above effect is not found in the case of carbon rich media. (5) The amylase production can be increased 2.5 times when 10% of defatted soy bean is admixed to cheaply available wheat bran. (6) The excellent effect is found for amylase production when 20% of wheat bran is admixed to defatted dry milk which is a poor medium. The activity is found to be $D^{40^{\circ}}_{30'}$ 7,000(L.S.V. 1,800) in 10% medium. (7) No significant effect is observed due to the addition of various inorganic salts. 3. Amylase production by solid cultures. Several conditions for amylase production by strain A-12 in wheat bran cultures have been studied and the results obtained are as follows. (1) The optimum conditions: are temperature $33^{\circ}C$, incubation lime 2 days, water content added 150 to 175% and the thickness of the medium 1.5cm, The activity is found to be $D^{40^{\circ}}_{30'}$ 36,000(L.S.V. 15,000) (2) No significant effect is found in the case of the additions of various organic and inorganic substances.

  • PDF

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Studies on the Factors Enhancing the Effects of Nitrogen Application of Rice Culture in Korea (수도작(水稻作)에서 시용질소효과 증대요인의 해석적(解析的) 연구)

  • Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.131-155
    • /
    • 1983
  • Though it has been widely known the nitrogen effects are influenced by soils, varieties, and mineral nutrients in the rice culture, few analyses in relation to the factors increasing nitrogen effect have been studied in Korea. The effects of potassium and silica on the factors increasing nitrogen effects in paddy soils were investigated in accordance with soil improvement practices and nitrogen application methods for the cultivated varieties. The results obtained are as follows. 1. For 413 paddy fields, the yield from soils without nitrogen application ranged from 200 to 850kg/10a and that from nitrogen application did 350 to 1,051kg/10a. The yield increament by nitrogen application varied 50 to 650kg/10a depending on soils. 2. Soil chemical characteristics for high yield were different between with nitrogen and without nitrogen application. In the without nitrogen application, however, contents of organic matter, phosphorous, potassium and calcium of high yield soils were lower than those of low yield, while the available silica content was higher in the former. 3. The yield increased with nitrogen application up to 22.4kg/10a and thereafter it decreased. These phenomena were supposed to be not be decrease of nitrogen uptake but by lowered silica uptake. 4. Clay soil incorporation, deep plough, and inorganic constituents control such as Ca, Mg, and $Sio_2$ were effective as soil improvement praitices. It was appeared that increases of silica content and Ca/Mg ratio were important to increase nitrogen effects. 5. For the correlation between yield and yield components, it was high between yield and panicle in low nitrogen level and so was it between grain yield and ripening rate in high nitrogen. 6. In the urea and super granule urea application plot, recovery rate of nitrogen by plant and soil was high and yield was remarkable high. 7. Regardless of fertilizer types such as ammonium sulfate and urea, the residual nitrogen was about 4kg/10a in both plots of 5.8 and 11.6kg/10a. N applied. 8. The potassium application to soil enhanced the nitrogen efficiency. It was more effective in low potassium soil. 9. Optimum pH value for gel formation in the 4% sodium silicate solution was approximately 6.6. 10. It was suggested that silica could affect to rice plant growth as the inorganic and organic chemical components.

  • PDF

Improvement of Dispersibility of Parched Cereal Powder by Agglomeration Treatment (응집처리를 통한 미숫가루의 분산성 개선)

  • Lee, Chang-Sung;Lee, Keun-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.385-390
    • /
    • 1998
  • The effect of agglomeration treatment was examined to prevent the parched cereal powder from clumping when it is blended with water. Parched cereal powder was composed of 66.9% carbohydrate, 7% water, 12.1% crude protein, 12.1% crude fat and 1.9% ash, respectively. Particle size of parched cereal powder was generally enlarged by agglomeration treatment. This phenomenon was confirmed by particle size analyzer and microscopic observation. The color of agglomerated sample was shown to be slightly darker than the untreated sample. The water absorption indices of agglomerated samples which were steamed for 2min and re-dried were significantly increased as compared with the untreated sample. The water solubility indices of agglomerated samples showed generally lower values than those of untreated samples. In views of quality and processing time, the optimum condition of agglomeration treatment for manufacturing well-dispersable parched cereal powder in water was 15min re-drying after 2min steaming. It is concluded that the agglomeration treatment improves the dispersibility of parched cereal powder and thus facilitates the intake of it after mixing with water.

  • PDF

Study on the Soil Improvement in the Grassland I. Effects of the dolomite particle and the shell powder application on soil characteristics, dry matter yield and nutritive value of forages in loam soil (초지에서 토양 개량에 관한 연구 I. 양토에서 도로마이트 입자도와 패각분 시용이 토양특성과 목초의 수량 및 사료가치에 미치는 영향)

  • Lee, J.K.;Choi, S.S.;Kim, M.J.;Park, G.J.;Yoon, S.H.;Shin, J.S.;Shin, D.E.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • This study was conducted to investigate the effects of application of the dolomite particle and the shell powder on soil characteristics, dry matter yield and nutritive value of forages in loam soil at the experimental field of National Livestock Research Institute, Suwon, from 1994 to 1996. Application treatments were control, lime, dolomite 0.5, 2.0, 4.0mm, and shell powder in mixed pasture. Rate of dust occurrence was greatly decreased according to dolomite application and the dissolving rate in soil was highest in shell powder application among treatments. Although there was no significant difference, average dry matter yield of forages for 3 years was slightly increased with the application of lime, shell powder, dolomite 0.5mm, 4.0mm, 2.0mm and control in order. Both Ca and Mg contents of forages were no differences among treatments in 1994. However, all treatments were higher than those of control in 1995. And K and Na contents of forages were no differences among treatments. Lime requirement was greatly increased from 2,630 to 6,150kg per ha with the lapse of time. Although soil hardness was optimum level at first, it was likely to become hard little by little after treatments. Solid phase of soil was lowered a little except for control. Organic matter and available $P_2O_5$ contents of soil were highest in shell powder application among treatments, and K, Ca and Mg contents of soil were no differences among treatments. Ca content was increased a little in 1995, but decreased a little in 1996 compared to that of soil before treatments in 1994. AIso, Mg content was lowered than that of soil before experiment in 1995 and 1996. The results demonstrated that use of dolomite and shell powder as lime substitutes could be reduced dust problem and coast pollution as well as soil improvement. Therefore, it is desirable to apply the dolomite and the shell powder every 3 years in loam soil.

  • PDF

Application of in vitro Culture Methods for Overcoming Cross-incompatibility in Interspecific Crosses between L. longiflorum and L. cernuum (나팔나리와 자생 솔나리 간의 종간교잡 불화합성 극복을 위한 in vitro 배양방법)

  • Kim, Young Jin;Park, Sung Min;Kim, Jong Hwa
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.378-383
    • /
    • 2001
  • Embryo culture, ovule culture and ovary slice culture were tested to find optimum method for overcoming post fertilization barrier in interspecific crosses between L. longiflorum 'Gelria' and L. cernuum. Although reciprocal crosses between the species were carried out by cut-style pollination method, fruits developed only in crosses of L. longiflorum${\times}$L. cernuum. On the 40 days after pollination, ovaries were sliced into 2-4mm thickness and cultured on a hormone-free Murashige-Skoog (MS) medium, supplemented with 2%, 4%, 6%, 8% and 10% sucrose. For the L. longiflorum Gelria'${\times}$L. cernuum cross, ovule development was found to be best at 6% sucrose and a lot of hybrid plant lets established directly from the ovary slice culture and subsequent ovule culture. High concentration of sucrose above 8% made ovules abort or vitrificate from 40 days after culture. In contrast, ovules from the L. cernuum${\times}$L. longiflorum 'Gelria' cross swelled well in ovary slice culture, however, they did not germinated in subsequent ovule culture. On the 60 days after pollination, ovules thicker than 0.6mm was interpreted as one containing embryo. The embryo size ranged from 1.2 mm to 1.7 mm, and in vitro development of the excised embryos was found to be best with the MS medium (pH 5.8), supplemented with $0.1-1 mg{\cdot}L^{-1}$ NAA and 6% sucrose. Thick ovules excised 60 days after pollination germinated about 60% as normal seeds in MS medium supplemented with 6% sucrose and free hormone. The ovule culture 60 days after pollination was concluded to be most recommendable to produce interspecific hybrids in large scale crosses between L. longiflorum 'Gelria' and L. cernuum by the reason of easy procedure.

  • PDF

Stock Assessment and Management Implications of Small Yellow Croker in Korean Waters (한국 근해 참조기의 자원평가 및 관리방안)

  • ZHANG Chang Ik;KIM Suam;YOON Seong-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.282-290
    • /
    • 1992
  • Based on surplus production models using fishery data for the last 20 years, a stock assessment was conducted for the small yellow croaker in Korean waters. The maximum sustainable yields (MSY) from the Schaefer and Fox models were estimated to be 37,000 metric tons (mt) and 33,450 mt. Zhang's model using time-series biomass with instantaneous coefficients of fishing mortality (F) and using time-series biomass and catch yielded MSY estimates of 45,328 mt and 40,160 mt, respectively. A yield-per-recruit analysis showed that the current yield per recruit of about 20g with F= 1.11 $yr^{-l}$, where the age at first capture $(t_c)$ is 0.604, was much lower than the maximum possible yield per recruit of 43g. Fixing $t_c$ at the current level and reducing fishing intensity (F) from 1.11 $yr^{-l}$ to 0.4 $yr^{-l}$ yielded only a small increase in predicted yield per recruit, from 20 to 25g. However, estimated yield per recruit increased to 43g by increasing $(t_c)$ from the current age (0.604) to age three with F fixed at the current level. This age at first capture corresponded to the optimal length which was obtained from the $F_{0.1}$ method. According to the analysis of stock recovery strategies employing the Zhang model, the optimum equilibrium biomass $(B^*_{MSY})$ which produces the maximum yield could be achieved after approximately five years at the lower fishing intensity (F=0.5).

  • PDF

Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor (연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해)

  • KIM Se-Kwon;BYUN Hee-Guk;KANG Tae-Jung;SONG Dae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.120-132
    • /
    • 1993
  • A continuous hollow fiber membrane reactor(CHFMR) was developed and optimized for the production of yellowfin sole(Limanda aspera) skin gelatin hydrolysates using trypsin. The results were summerized as follows: The $K_m$ value of the CHFMR was 2.4 times higher than that of the batch reactor, indicating reduced enzyme affinity for the substrate. The $K_2$ value of the CHFMR was 8.5 times lower than that of the batch process, showing a significant reduction in trypsin activity in the CHFMR. The optimum operating conditions for the CHFMR process were $55^{\circ}C$, pH 9.0, flux 7.79 ml/min, residence time 77min, and trypsin to substrate ratio, 0.01(w/w) After operating for 60min under the above conditions, $79\%$ of the total amount of initial gelatin was hydrolysed. Enzyme leakage was observed through the 10,000 MWCO membrane after the 20min of reactor operation, while none occurred after 5hr. Total enzyme leakage was about $12.95\%$ at $55^{\circ}C$ for 5hrs. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on trypsin activity loss for 60min of the CHFMR operation. The CHFMR operating with the membrane lost $34\%$ of the initial activity versus a $23\%$ loss of activity after 3hr in the continuous reactor lacking the hollow fiber membrane. The measurement of fouling property showed that relative flux reduction was $91\%$ and flux recover rate was $92\%$ at $10\%$ substrate solution. The productivity(378.85mg product/mg enzyme) of the CHFMR was more than 4 times higher than that of the batch reactor at $55^{\circ}C$.

  • PDF