• Title/Summary/Keyword: pH of drainage

Search Result 286, Processing Time 0.024 seconds

Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone (제강슬래그, 우분 및 석회석을 활용한 폐 석탄광의 산성광산배수 처리)

  • Jung Myung-Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.16-23
    • /
    • 2005
  • In order to remediate acid mine drainage (AMD) from the Jeongam coal mine, steel mill slag, cow manure and limestone were used. As a result of batch test, the proper amounts for treating 1 L of acid mine water from the mine were determined as 15 g of steel mill slag, 15 g of cow manure and 500 g of limestone. After feasibility test, remediation system was arranged in the order of steel mill slag tank combination of cow manure and limestone, precipitation tank and oxidation tank. During 54 days' operations, the pH values of the treated waters increased from 3.0 to 8.3 and 61 % of sulfate concentration in an initial water was decreased. In addition, the removal efficiencies for metals in the water were nearly 99.9% for Al, Fe, Zn and 92.6% for Mn. Thus, the combination of steel mill slag, cow manure and limestone can be used as neutralization 때d metal removal for acid mine drainage.

The Study on the Removal Process of Heavy Metals from Mine Drainage Using Coal Bottom Ash (석탄 바닥회를 이용한 광산배수의 중금속 제거 공정 연구)

  • Kim, Hye Rim;Lee, Jung Mi;Han, In Kyu
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.41-47
    • /
    • 2020
  • This study was carried out to utilize the coal bottom ash generated in a circulating fluidized bed combustion boiler as a treatment agent for heavy metal ions, and experiments were conducted to remove heavy metal ions from the acid mine drainage. The batch experiments were conducted to investigate the influence of dosage of ash, initial concentration of solution on the removal capacity of heavy metal ions (Cu, Cd, Cr, Pb). The results of the experiment showed that the total removal capacity of heavy metals was 30.8 mg/L and 46.4 mg/g, respectively, under the condition that the concentration of coal ash was added as 15 g/L of heavy materials and 10 g/L of light materials. After that, a long-term column experiment was performed to determine the maximum removal capacity of heavy metal ions (Cu, Cd, Cr, Pb, As), and the removal capacity for each metal component was investigated. After approximately 60 days of operation, the maximum removal capacity of heavy metals was 23.6 mg/g at pH 9.25.

Characteristics of Elements Extraction in Waste Rocks on the Abandoned Jangpoong Cn Mine (장풍 동광산 폐광석 내 원소의 용출 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.695-708
    • /
    • 2008
  • In order to evaluate the geochemical behaviors of elements with waste rocks in the abandoned Jangpoong Cu mine area, total concentration analysis and leaching experiments were performed. The content of elements within waste rocks compared with background values decreased in order of As>>Cu>Pb>Cd>Co. Leaching experiments were carried out at various extraction environments, considering the acid rain ($0.00001{\sim}0.001N\;HNO_3$) and the acid mine drainage ($0.001{\sim}0.1N$ HNO3). After 24 hours of reaction with different acidic solution, the leaching characteristics of waste rocks were classified into three types according to final pH of leaching solution. Type I refers to the case that the final pH of leaching solution was lower than that of the reaction solution due to the dissolution of acidic minerals from rocks, while type 2 and 3 refer to the case that the final pH maintained higher than that of the reaction solution. Theses types include in acid buffering minerals such as clay minerals and carbonate minerals. The leaching characteristics of the elements after the reaction could be categorized into As-Co-Fe, Cu-Mn-Cd-Zn, and Pb. As-Co-Fe started to get leached under 2.5 of pH regardless of changes in the final pH, and Cu-Mn-Cd-Zn showed different initial leaching pH according to the types of final pH changes. Based on the pH value where leaching started regardless of leaching concentration, the relative mobility of each element was in the order of Mn Zn>Cd>Cu>>Fe Co>As>Pb. Thus, more higher mobility elements(Zn, Mn and Cu) were leached by reacting with acid rain water. Acid mine drainage may result in distributions of elements having relatively less mobility(As, Fe, Co and Pb).

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

A Study on the Correlations among the Physical and Chemical Properties of Soils in Korea (우리나라 토양(土壤)의 물리화학적(物理化學的) 특성(特性) 상호관계(相互關係)에 관(關)한 연구(硏究))

  • Jo, In-Sang;Hur, Bong-Koo;Kim, Lee-Yul;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.134-139
    • /
    • 1985
  • This study was designed to understand the relationships among the soil physical and chemical properties and to obtain the useful regression to calculate the cation exchange capacity, field capacity, wilting point moisture content and organic matter content. Fourteen soil properties were collected from 315 representative soil series in Korea. Simple and multiple regression were analyzed with the data by grouping land use, drainage class and soil depth. The multiple regression equations which can be calculated the cation exchange capacity from clay and organic matter content were found out. Cation exchange capacity of clay was 22me/100g, and that of organic matter was 103.3me/100g. Moisture retentions, both of wilting point moisture content and field capacity, were closely related to clay and organic matter content. The coefficient of clay was increased with drainage class changed more poor but the coefficient of organic matter was highest at moderately well drained soil. Organic matter content can be calculated by soil texture and pH. Organic matter content was decreased by in creasing the pH. The highly significant regressions were found between base saturation and pH.

  • PDF

Change of Vegetation and Soil Characteristics of Green Roofs in Dongguk University (동국대학교 옥상녹화 지역의 식생 및 토양특성 변화)

  • Lee, Sang-Jin;Park, Gwan-Soo;Kim, Dong-Il;Lee, Dong-Kun;Kil, Sung-Ho;Jang, Seong-Wan;Park, Beom-Hwan;Yun, Jun-Young;Jang, Kwan-Woo;Lee, Ho-Young;Kwon, Oh-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2013
  • This study was to provide the base data on the status of vegetations and soils in green roofs by analyzing the soil and vegetation characteristics of 4 green roofs in Dongguk University in September 2012. Sanglokwon(SW), Dongguk Hall(DH), University Library(UL), and Information and Culture Hall P(IC) were established in 2005, 2008, 2009, and 2010, respectively. The areas of green roofs were $700m^2$, $2,300m^2$, $1,240m^2$, and $640m^2$ in SW, DH, UL, and IC respectively. The investigated floras of vascular plants were 26 families, 55 genera, 65 species in Sanglokwon(SW), 53 families, 99 genera, 112 species in Dongguk Hall(DH), 43 families, 77 genera, 84 species in University Library(UL), and 41 families, 71 genera, 75 species in Information and Culture Hall P(IC), respectively. A positive correlation is shown between the number of plant species and planting area. Total nitrogen, organic matter, and potassium in soil have positive correlation with the number of plant species. The number of plant species was proportional to area and increased more than twice after planting. About a quarter of the invaded plants (including native and naturalized species) were naturalized plants. The total soil depths including vegetation soil and drainage soil at SW, DH, UL, and IC were 20cm, 10cm, 10cm, and 8cm, respectively. The depths of vegetation soil at SW, DH, UL, and IC were <7cm, <3cm, <2cm, and <2cm respectively. The soil pH in vegetation soil ranged from 5.22 to 5.36, and from 6.13 to 6.39 in drainage soil. Available-P concentration ranged from 10.17 to 189.77mg/kg in vegetation soil and from 6.70 to 81.17mg/kg in drainage soil. Carbon concentration in vegetation soil ranged from 2.93 to 9.70%, and 2.93 to 9.70% in drainage soil. Carbon contents in 20cm, 10cm, 10cm, and 8cm soil depths were $2.62kg/m^2$, $1.89kg/m^2$, $0.50kg/m^2$, and $0.53kg/m^2$ at SW, DH, UL, and IC, respectively.

Geochemistry of Acid Mine Water and Stream Sediment around the Donghae Coal Mine (동해탄광 주변 산성광산폐수와 하상퇴적물의 지구화학)

  • Oh, Dae Gyun;Kim, Jung Youp;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.213-220
    • /
    • 1995
  • Geochemistry of stream water and sediment collected in the vicinity of the Donghae coal mine in the Samchuk coalfied were investigated in order to evaluate the environmental impacts of acid mine drainage. The pH of stream water ranges from 2.85(at 2 km away from the mine) to 7.92(at uncontaminated tributary). The main cation and anion species in the upper stream are $Ca^{2+}$ and $SO_{4}{^2-}$, respectively. The level of pH and the amount of $HCO^{3-}$ in stream water increase to the downstream and where uncontaminated small tributaries are joining, and in the area covered with limestone. From the results of thermodynamic calculation, the main forms of iron in stream water are estimated as $Fe^{2+}$ and $FeSO_{4}{^0}$, and most of them could be precipitated as FeO(OH) with increase of pH. The white precipitates in stream sediments particularly found around the coal mine are proved to be $Al(OH)_3$ by XRD and XRF analysis. As a result of investigation for seasonal variation of AMD, the level of pH decreased and conductivity increased in dry season.

  • PDF

Isolation and Characterization of a Antimicrobial Compound from Bacillus coagulans

  • Abada, Emad Abd El-moniem
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • A bacterium strain called Bacillus coagulans was isolated from an industrial wastewater drainage and selected for its antimicrobial activities against bacteria and fungi. Characterization studies strongly suggested that this strain is Bacillus coagulans. Antimicrobial activity was found against gram-positive, gram-negative bacteria and yeast strain. Maximal activity was observed after 24 h when incubated at $30^{\circ}C$ and pH 8. The activity was found to be stable at $75^{\circ}C$ for 30 min and at pH range of 2-12. Analysis of the antimicrobial compound by SDS-PAGE suggested a molecular mass of approximately 7.5 KDa. The substance was characterized as a bacteriocin, because of its proteinaceous nature and low molecular weight. Our bacteriocin could potentially be used as a food preservative, because of its thermostable property and broad antimicrobial spectrum.

Water and Nutrient Mass Balances in Paddy Field with Groundwater Irrigation in Low-Rainfall Year (저강우연도 지하수 관개 필지논에서 수도재배기간 동안의 물질수지)

  • Hwang, H.S.;Jeon, J.H.;Kim, B.H.;Yoon, C.G.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.39-50
    • /
    • 2002
  • Field experiment was performed to investigate water and nutrient mass balances in paddy field with groundwater irrigation from May to October, 2001. The total water inflow was about 1,183mm in which rainfall, overflow from upstream paddy, and groundwater irrigation accounted for 43, 30, and 27%, respectively. Notice that the precipitation of the study period was less than the average annual precipitation. The total drainage was almost balanced with the inflow and more than half of it was occurred by surface drainage. From the nutrient mass balance analysis, the T-P output (17.56kg/ha) was estimated slightly lower than the input (20.90kg/ha) and the T-N output (130.41kg/ha) was slightly greater than the input(129.24kg/ha). However, the difference was within the expectation and the nutrient mass was thought to be balanced considering uncertainties in field experiment and other activities not included in the study such as algae and soil microorganisms. The surface discharge of nutrient, which was about 10% of total nutrient output, was mainly affected by fertilization and rainfall runoff. Therefore, prudent surface drainage plan might be necessary particularly for the fertilization period to prevent degradation of receiving water quality. The study was performed under abnormally low rainfall compared to the average annual rainfall record, and further monitoring in diverse rainfalls and irrigation methods is recommended to estimate nutrient behavior in the paddy field more reasonably.

Stabilization of Two Mine Drainage Treated Sludges for the As and Heavy Metal Contaminated Soils (오염토양 특성별 광산배수처리슬러지의 비소 및 중금속 안정화)

  • Tak, Hyunji;Jeon, Soyoung;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.10-21
    • /
    • 2022
  • In the South Korea, 47% of abandoned mines are suffering from the mining hazards such as the mine drainage (MD), the mine tailings and the waste rocks. Among them the mine drainage which has a low pH and the high concentration of heavy metals can directly contaminate rivers or soil and cause serious damages to human health. The natural/artificial treatment facilities by using neutralizers and coagulants for the mine drainage have been operated in domestic and most of heavy metals in mind drainage are precipitated and removed in the form of metal hydroxide, alumino-silicate or carbonate, generating a large amount of mine drainage treated sludge ('MDS' hereafter) by-product. The MDS has a large surface area and many functional groups, showing high efficiency on the fixation of heavy metals. The purpose of this study is to develop a ingenious heavy metal stabilizer that can effectively stabilize arsenic (As) and heavy metals in soil by recycling the MDS (two types of MDS: the acid mine drainage treated sludge (MMDS) and the coal mine drainage treated sludge (CMDS)). Various analyses, toxicity evaluations, and leaching reduction batch experiments were performed to identify the characteristics of MDS as the stabilizer for soils contaminated with As and heavy metals. As a result of batch experiments, the Pb stabilization efficiency of both of MDSs for soil A was higher than 90% and their Zn stabilization efficiencies were higher than 70%. In the case of soil B and C, which were contaminated with As, their As stabilization efficiencies were higher than 80%. Experimental results suggested that both of MDSs could be successfully applied for the As and heavy metal contaminated soil as the soil stabilizer, because of their low unit price and high stabilization efficiency for As and hevry metals.