• Title/Summary/Keyword: pH of drainage

Search Result 286, Processing Time 0.029 seconds

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse (석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Nam, Chul-Woo;Park, Chong-Lyuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.379-386
    • /
    • 2008
  • Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

The Role of Chest CT Scans in the Management of Empyema (농흉에서 전산화 단층촬영의 의의)

  • Heo, Jeong-Suk;Kwun, Oh-Yong;Sohn, Jeong-Ho;Choi, Won-Il;Hwang, Jae-Seok;Han, Seung-Beom;Jeon, Young-June;Kim, Jung-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.397-404
    • /
    • 1994
  • Background: To decide the optimal antibiotics and application of chest tube, examination of pleural fluid is fundamental in the management of empyema. Some criteria for drainage of pleural fluid have been recommended but some controversies have been suggested. Recently, newer radiologic methods including ultrasound and computed tomography scanning, have been applied to the diagnosis and management of pleural effusions. We undertook a retrospective analysis of 30 patients with pleural effusion who had CT scans of the chest in order to apply the criteria of Light et al retrospectively to patients with loculation and to correlate the radiologic appearance of pleural effusions with pleural fluid chemistry. Method: We analyzed the records of 30 out of 147 patients with pleural effusion undergoing chest CT scans. Results: 1) Six of the pleural fluid cultures yielded gram negative organisms and three anaerobic bacterias and one Staphylococcus aureus and one non-hemolytic Streptococci. No organism was cultured in ninteen cases(63.0%). 2) The reasons for taking chest CT scans were to rule out malignancy or parenchymal lung disease(46.7%), poor response to antibiotics(40.0%), hard to aspirate pleural fluid(10.0%) and to decide the site for chest tube insertion(3.3%). 3) There was no significant correlations between ATS stages and loculation but there was a tendency to loculate in stage III. 4) There was a significant inverse relationship between the level of pH and loculation(p<0.05) but there appeared to be no relationship between pleural fluid, LDH, glucose, protein, loculation and pleural thickening. 5) In 12 out of 30, therapeutic measures were changed according to the chest CT scan findings. Conclusion: We were unable to identify any correlations between the plerual fluid chemistry, ATS stages and loculations except pH, and we suggest that tube thoracotomy should be individualized according to the clinical judgement and serial observation. All patients with empyema do not need a chest CT scan but a CT scan can provide determination of loculation, guiding and assessing therapy which should decrease morbidity and hospital stay.

  • PDF

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.

Effects of Integrated Soil Amelioration Techniques to Mature Newly Established Research Fields

  • Jung, Sug-Jae;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Cho, Hyun-Jun;Choi, Jung-Won;Lee, Pyeong-Ho;Lim, Dong-Hyuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.208-217
    • /
    • 2016
  • The Rural Development Administration moved to Jeonju for the balanced development of the land. This situation required establishment of new research fields with soils appropriate to cultivation. We applied a variety of amelioration techniques to mature soils of new research fields of the National Institute of Agricultural Science (NAS) and evaluated effects of the integrated amelioration techniques. The schedule of amelioration was following: 1) location of research fields was determined, 2) surface and subsoil samples were collected separately, 3) after aligning the top level of research fields, subsoil and surface soil were re-established with soil amendment, 4) the green manure crops were grown four seasons to improve the uniformity and increase the organic content of the research field, and 5) drainage canal and/or underdrainage were applied to poorly drained fields. The last green manure crop was rape in RDA fields and green barley in NAS fields. The average height, fresh weight, and dry matter weight of rape in good condition were 123 cm, $3,938kg\;10a^{-1}$, and $651kg\;10a^{-1}$, respectively. The height, fresh weight, and dry matter of green barley, on average, were 97 cm, $3,013kg\;10a^{-1}$, and $1,004kg\;10a^{-1}$, respectively. In the chemical properties of paddy field, pH and levels of silicate, calcium, magnesium, and potassium were in appropriate range but organic matter content of $16g\;kg^{-1}$ was less than the optimum level. In the chemical properties of upland field, pH and levels of phosphorus, calcium, magnesium, and potassium were appropriate range but organic matter content of $12g\;kg^{-1}$ was less than the optimum range. Evaluation of well-adapted soil was performed. The field in RDA was classified into the superior class with points ranging from 90 to 95 by the field evaluation test. The fields in NAS were mainly evaluated as the superior class with points greater than 85. However, some fields in NAS remained low quality with scores between 80 and 83. Further soil amelioration practices were suggested to fields with low soil quality.

Effects of the Limited Nutrient Supply at the Pollination Stage on the Growth and Nutrient Uptake of Muskmelon Grown in Rockwool (온실멜론의 암면재배에 있어서 수분기의 양분공급제한이 생육 및 양분흡수에 미치는 영향)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • This experiment was carried out to investigate the effects of limited nutrient supply during 21 days before and after pollination stage on the growth, fruit quality and nutrient uptake of muskmelon in rockwool culture. Muskmelon, cv. Earl's Favorite seeds sowed on rockwool cube and transplanted on rockwool slab($90\times15\times7.5cm$) when 2 to 3 true leaf appeared on Sep. 6, 1991. Three kinds of nutrient composition recommended by Shizuoka university, combinated with the composition of Otsuka house A and composition Shizuoka III. One half of calcium nitrate(Ca(NO$_3$)$_2$.4$H_2O$) for limiting nitrogen supply during 21 days was treated and then fertigated the nutrient composition recommended by Shizuoka university up to harvest time. Trickling nozzles(Netafim Co. Israel) were used for fertigation of nutrient solution and noncirculating system was employed. Temperature was maintained $18^{\circ}C$ in night but 23 to $25^{\circ}C$ for 10 days after pollination for softening the fruit. The drainage ratio of nutrient solution was adjusted 20 to 30 percent. Fertigated and drained amount, and the pH and EC of nutrient solution were recorded. The concentrations of mineral elements including N, P, K, Ca, and Mg were analyzed and compared among treatments. In both autumn and winter cultivation, the limitation of nutrient supply by adjustment of nutrient composition(NO$_3$-N : 8meㆍ$\ell^{-1}$) caused the nutrient deficiency in muskmelon plant due to the limited nutrient supply. After pollination nutrient limitation by the lowering the nitrate retarded the over thickening of upper leaves of muskmelon but plant height and fresh weight of fruit were higher in the plot of nonlimited nutrient supply. The phenomena were attributed to the differences of the amount of nutrient uptake due to the limited time of nutrient solution, duration of nutrient supply and concentration of nutrient solution. These results suggested that increasing nutrient supply in the pollination stage was favorable for better appearance of fruit and improving fruit quality. Further trials would be required for the incre-ment of sugar degree of muskmelon grown in rockwool.

  • PDF

Analysis of Soil and Leaf Characteristics of Pear Orchards with Lime-Induced Chlorosis Leaves (배나무 엽 황화증상 발생 과원의 토양 및 엽 특성 분석)

  • In Bog Lee;Dae Ho Jung;Pyoung Ho Yi;Seung Tak Jeong;Yoon Kyeong Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.331-337
    • /
    • 2023
  • Physiological disorders in pear fruit are mainly caused by problems during the growing season, such as lack of calcium in the soil, poor drainage, low porosity, vigorous pruning, and excessive fruiting. In this study, soil physicochemical properties and leaf characteristics were analyzed in pear orchards in four regions of Korea where chlorosis symptoms occurred to determine the causes of chlorosis. The color of chlorotic leaves was diagnosed using the naked eye or SPAD and Hunter values. The soil of the chlorotic orchard had a significantly higher soil pH than that of the regular orchard. Although adequate soil depth was not significantly associated with chlorosis, combined with over-fertilization of the soil with lime, it could potentially impair plant iron uptake. Chlorotic leaves had significantly lower iron and calcium contents and significantly higher magnesium contents than those of regular leaves. Therefore, the intensive occurrence of chlorosis during secondary shoot development around June and July when it is hot and humid may be due to impaired iron and calcium absorption, leading to physiological disorders. To solve this problem, avoiding the over-application of lime and applying foliar fertilizers containing chelated iron is recommended.

Optimum Concentration of Supply Nutrient Solution in Hydroponics of Sweet Pepper using Coir Substrates (코이어 배지를 이용한 착색단고추 수경재배 시 적정 급액농도)

  • Kim, Ho-Cheol;Cha, Seung-Hoon;Kim, Chul-Soo;Lee, Hye-Jin;Lee, Yong-Beom;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.210-214
    • /
    • 2008
  • This experiment was carried out investigation of optimum concentration of supply nutrient solution in hydroponics of sweet pepper using coir substrates (coconut dust fiber=70% : 30%, v/v). During the growing period, it was found out that the electric conductivity (EC) would increase in proportion to the supply nutrient concentration but it was in inverse proportion to the moisture content. The pH of drainage was stable, while EC was high showing EC $7.3\;dS{\cdot}m^{-1}$ in EC $4.0\;dS{\cdot}m^{-1}$ of supply nutrient concentration. Also, standard deviation and coefficient of variation were high. Plant length was no difference by the supply nutrient concentration. Photosynthesis rate was generally high in supply nutrient concentration EC$4.0\;dS{\cdot}m^{-1}$. Fruit weight was heavy in supply nutrient concentration EC $4.0\;dS{\cdot}m^{-1}$, fruit shape was close to a regular square in supply nutrient concentration EC $3.5dS{\cdot}m^{-1}$.

Analysis of the soil characteristics in peat layer (국내 피트층 토양의 특성 분석)

  • Park, Seonyoung;Kang, Jeongwon;Kim, Yunji;Jeong, Yonggi
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2020
  • In this study, the soil characteristics of peat layer in Korea were analysed to predict new peat distribution areas in Taean, Chungcheongnam-do. The soil characteristics of peat distribution areas in Taean were compared with those in other areas in Korea. In Korea, peat researches were conducted in various regions, such as Taean in Chungcheongnam-do, Pyeongtaek in Gyeonggi Province, Gangneung in Gangwon-do, Ulsan, Iksan in Jeollabuk-do and Jangheung in Jeollanam-do. We summarized a) topographic distribution, b) deposition type, c) soil drainage classes, and d) soil suborder of previously studied area to determine criteria for prediction of peat distribution area. Through a case study, the type of peat layer distribution area in Taean were divided into two; (1) a) valley, b) co-alluvium, c) somewhat poorly drained, d) aqualfs and (2) a) marine plain, b) alluvium, c) very poorly drained, d) aquepts. A field survey was conducted to confirm the distribution of the actual peat layer. All peat layer were located within 10-km from the coastal line which is similar to previous studies, and the peat layer was characterized with pH 5, humic acid content of less than 15% and dark brown color. The new peat layer in Taean was deeper, thicker and less humificated than other studied areas.

Study on Optimum Water Supply by Solar Radiation in Cut Rose(Rosa hybrida cv Cardinal) (일사비례제어에 의한 절화장미(Rosa hybrida cv Cardinal)의 급액량 구명)

  • Na, Taek-Sang;Kim, Jeung-Gun;Choi, Kyong-Ju;Gi, Gwang-Yeon;Yoo, Yong-Kweon
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.215-220
    • /
    • 2008
  • This study was carried out to find optimum accumulative solar radiation in 'Carnidal' of Perlite Media. The pH was stable from 6.0 to 6.7 during cultivation. Electric conductivity by drainage was higher water than by supply water and electric conductivity was increased at later. Inorganic compound, such as phosphoric, kalium and magnesium were accumulated in crossed system. Especially, kalium and magnesium were highly accumulated. When solar radiation high, consumption of the amount of nutrient solution were increased. Sap flew was $273g{\cdot}hr^{-1}$ per hour from 10 : 30 to 11 : 00 AM. However there was no relation-ship between solar radiation and the mount of sap flew. When amount of solar radiation was $250W{\cdot}hr^{-1}$, cut rose 'Cardinal' nutrient consumption was 212.8 mL at nutrient supply of 50 mL. The yield of cut rose 'Cardinal' was 154.6 ea/10a in perlite media. In the cut rose 'Cardinal', nutrient solution was 50 mL as supplied at solar radiation of $200W{\cdot}hr^{-1}$ and nutrient solution was 30mL as supplied at solar radiation of $250W{\cdot}hr^{-1}$ at low solar radiation in perlite.