• Title/Summary/Keyword: pH electrode

Search Result 694, Processing Time 0.026 seconds

Effects of PbO on the Repassivation Kinetics of Alloy 690

  • Ahn, SeJin;Kwon, HyukSang;Lee, JaeHun;Park, YunWon;Kim, UhChul
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.131-139
    • /
    • 2004
  • Effects of PbO on the repassivation kinetics and characteristics of passive film of Alloy 690 were examined to elucidate the influences of PbO on the SCC resistance of that alloy. The repassivation kinetics of the alloy was analyzed in terms of the current density flowing from the scratch, i(t), as a function of the charge density that has flowed from the scratch, q(t). Repassivation on the scratched surface of the alloy occurred in two kinetically different processes; passive film initially nucleated and grew according to the place exchange model in which log i(t) is linearly proportional to q(t), and then grew according to the high field ion conduction model in which log i(t) is linearly proportional to 1/q(t) with a slope of cBV. The cBV is found to be a parameter representing repassivation rate and hence SCC susceptibility of the alloy. The lower the value of cBV, the faster the repassivation rate and the higher the SCC resistance of an alloy. Addition of PbO to pH 4 and 10 solutions increased the value of cBV of alloy 690, reflecting slower repassivation rate than without PbO. The change in the value of cBV was grater in pH 10 than in pH 4. The increase in SCC susceptibility of alloy 690 with the addition of PbO to solution was presumably due to the Cr-depletion in the outer parts of passive film of the alloy with an incorporation of Pb compounds in the film, which was revealed by Mott-Schottky, AES and XPS analyses.

Removal of Rhodamine B Dye Using a Water Plasma Process (수중 플라즈마 공정을 이용한 Rhodamine B 염료의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Objectives: In this paper, a dielectric barrier discharge (DBD) plasma reactor was investigated for degrading the dye Rhodamine B (RhB) in aqueous solutions. Methods: The DBD plasma reactor system in this study consisted of a plasma component [titanium discharge (inner), ground (outer) electrode and quartz dielectric tube], power source, and gas supply. The effects of various parameters such as first voltage (input power), gas flow rate, second voltage (output power), conductivity and pH were investigated. Results: Experimental results showed that a 99% aqueous solution of 20 mg/l Rhodamine B is decolorized following an eleven minute plasma treatment. When comparing the performance of electrolysis and plasma treatment, the RhB degradation of the plasma process was higher that of the electrolysis. The optimum first voltage and air flow rate were 160 V (voltage of trans is 15 kV) and 3 l/min, respectively. With increased second voltage (4 kV to 15 kV), RhB degradation was increased. The higher the pH and the lower conductivity, the more Rhodamine B degradation was observed. Conclusions: OH radical generation of dielectric plasma process was identified by degradation of N, N-dimethyl-4-nitrosoaniline (RNO, indicator of OH radical generation). It was observed that the effect of UV light, which was generated as streamer discharge, on Rhodamine B degradation was not high. Rhodamine B removal was influenced by real second voltage regardless of initial first and second voltage. The effects of pH and conductivity were not high on the Rhodamine B degradation.

Electrical Properties of Synthesis LSCF Cathode by Modified Oxalate Method (Modified Oxalate Method로 의해 합성한 LSCF Cathode의 전기적 특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Jung, Ji-Mi;Park, Sang-Sun;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.30-31
    • /
    • 2006
  • The LSCF cathode for Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolyte. The LSCF precursors using oxalic acid, ethanol and $NH_4OH$ solution were prepared at $80^{\circ}C$, and pH was controlled as 2, 6, 7, 8, 9 and 10. The synthesis precursor powders were calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. Unit cells were prepared with the calcined LSCF cathode, buffer layer between cathode and each electrolyte that is the LSGM, YSZ, ScSZ and CeSZ. The synthesis LSCF powders by modified oxalate method were measured by scanning electron microscope and X-ray diffraction. The interfacial polarization resistance of cell was characterized by Solatron 1260 analyzer. The crystal of LSCF powders show single phase at pH 2, 6, 7, 8 and 9, and the average particle size was about $3{\mu}m$. The electric conductivity of synthesis LSCF cathode which was calcined at $1200^{\circ}C$ shows the highest value at pH 7. The cell consist of GDC had the lowest interfacial resistance (about 950 S/cm@650) of the cathode electrode. The polarization resistance of synthesis LSCF cathode by modified oxalate method has the value from 4.02 to 7.46ohm at $650^{\circ}C$. GDC among the electrolytes, shows the lowest polarization resistance.

  • PDF

Flow-accelerated corrosion assessment for SA106 and SA335 pipes with elbows and welds

  • Kim, Dong-Jin;Kim, Sung-Woo;Lee, Jong Yeon;Kim, Kyung Mo;Oh, Se Beom;Lee, Gyeong Geun;Kim, Jongbeom;Hwang, Seong-Sik;Choi, Min Jae;Lim, Yun Soo;Cho, Sung Hwan;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3003-3011
    • /
    • 2021
  • A FAC (flow-accelerated corrosion) test was performed for a straight pipe composed of the SA335 Gr P22 and SA106 Gr B (SA106-SA335-SA106) types of steel with welds as a function of the flow rate in the range of 7-12 m/s at 150 ℃ and with DO < 5 ppb at pH levels ranging from 7 to 9.5 up to a cumulative test time of 7200 h using the FAC demonstration test facility. Afterward, the experimental pipe was examined destructively to investigate opposite effects as well as entrance effects. In addition, the FAC rate obtained using a pipe specimen with a 50 mm inner diameter was compared with the rate obtained from a rotating cylindrical electrode. The effects of the complicated fluid flows at the elbow and orifice of the pipeline were also evaluated using another test section designed to examine the independent effects of the orifice and the elbow depending on the distance and the combined effects on orifice and elbow. The tests were performed under the following conditions: 130-150 ℃, DO < 5 ppb, pH 7 and a flow rate of 3 m/s. The FAC rate was determined using the thickness change obtained from commercial room-temperature ultrasonic testing (UT).

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

Analysis of Heavy Metals in $[^{201}Tl]$TICI Injection Using Polarography (폴라로그래피를 이용한 $[^{201}Tl]$염화탈륨 주사액의 중금속 분석)

  • Chun, Kwon-Soo;Suh, Yong-Sup;Yang, Seung-Dae;Ahn, Soon-Hyuk;Kim, Sang-Wook;Choi, Kang-Hyuk;Lee, Dong-Hoon;Lim, Sang-Moo;Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.336-343
    • /
    • 2000
  • Purpose: Thallous-201 chloride produced at Korea Cancer Center Hospital(KCCH) is used in detecting cardiovascular disease and cancer. Thallium impurity can cause emesis, catharsis and nausea, so the presence of thallium and other metal impurities should be determined. According to USP and KP, their amounts must be less than 2 ppm in thallium and 5 ppm in total. In this study, the detection method of trace amounts of metal impurities in $[^{201}Tl]$TICI injection with polarography was optimized without environmental contamination. Materials and Methods: For the detection of metal impurities, Osteryoung Square Wave Stripping Voltammetry method was used in Bio-Analytical System (BAS) 50W polarograph. The voltammetry was composed of Dropping Mercury Electrode (DME) as a working electrode, Ag/AgCl as a reference electrode and Pt wire as a counter electrode. Square wave stripping method, which makes use of formation and deformation of amalgam, was adopted to determine the metal impurities, and pH 7 phosphate buffer was used as supporting electrolyte. Results: Tl, Cu and Pb in thallous-201 chloride solution were detected by scanning from 300 mV to -800 mV Calibration curves were made by using $TINO_3,\;CuSO_4\;and\;Pb(NO_3){_2}$ as standard solutions. Tl was confirmed at -450 mV peak potential and Cu at -50 mV Less than 2 ppm of Tl and Cu was detected and Pb was not detected in KCCH-produced thallous-201 chloride injection. Conclusion: Detection limit of thallium and copper is approximately 50 ppb with this method. As a result of this experiment, thallium and other metal impurities in thallous-201 chloride injection, produced at Korea Cancer Center Hospital, are in the regulation of USP and KP Polarograph could be applied for the determination of metal impurities in the quality control of radiopharmaceuticals conveniently without environmental contamination.

  • PDF

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

Electrochemical Studies on the Lanthanides (란탄족 원소의 전기화학적 환원에 관한 연구 (제 1 보))

  • Park, Jong Min;Gang, Sam U;Do, Lee Mi;Han, Yang Su;Son, Byeong Chan
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.561-568
    • /
    • 1990
  • Voltammetric behavior of some light lanthanide ions (La$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, and Eu$^{3+}$) in various supporting electrolytes has been investigated by several electrochemical techniques. The peak potentials and the peak currents, their dependency on the concentration, temperature and pH effects, the reversibility of the electrode reactions are described. The reduction of La$^{3+}$, Pr$^{3+}$ and Nd$^{3+}$ in 0.1 M lithium chloride proceeds by a three-electron change directly to the metallic state (Ln$^{3+}$ + 3e- → Ln$^0$) and charge transfer is totally irreversible. However, the reduction of Sm$^{3+}$ in 0.1 M tetramethylammonium iodide and Eu$^{3+}$ in 0.1 M lithium chloride proceeds in two stages (Ln$^{3+}$ + e- → Ln$^{2+}$ and Ln$^{2+}$ + 2e- → Ln$^0$). At pH values lower than ca.4 the hydrated lanthanide species (Ln(OH)$^{2+}$) reduced before the lanthanide ions (Ln$^{3+}$) due to the catalytic effect of hydrogen ions, and peak current increase with in the order Eu$^{3+}$ < Sm$^{3+}$ < Nd$^{3+}$ < Pr$^{3+}$ < La$^{3+}$ in differential pulse polarography. Some representative plots of $i_{pc}V^{-1/2} (proportional to current function) vs. V show considerable influence of hydrogen ion/lanthanide ion concentration in cyclic voltammetry. It is shown that a reaction of lanthanide ions with proton and/or water and catalytic reaction is enhanced at lower pH and at decreased lanthanide ion concentration.

  • PDF

Photocatalytic Cr(VI) Reduction with a Photoanode for Hydrogen Production (수소제조용 광전극을 활용한 Cr(VI) 환원처리에 관한 연구)

  • Shim, Eun-Jung;Park, Youn-Bong;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.452-457
    • /
    • 2007
  • Titanium foil and mesh(anodized tubular $TiO_2$ electrode, ATTE) were anodized in a bath at $5^{\circ}C$ with 20V external bias applied, then annealed at different temperatures($450^{\circ}C{\sim}850^{\circ}C$) to obtain tubular $TiO_2$ on the Ti substrate. The prepared sample was used to investigate rate of hydrogen production as well as Cr(VI) reduction. The ATTEs annealed at relatively lower temperatures showed higher activity than those at relatively higher temperatures. In particular, the Cr(VI) reduction was pH-dependent. To improve photocatalytic Cr(VI) reduction with the ATTEs, two configurations, fixing foil type and rotating mesh type, were also compared. As a result, the rotating mesh type was much more effective for Cr(VI) reaction than the former due to the more efficient use of the light. In the rotating type reactor, as the rotating speed increased, the rate of the Cr(VI) reduction was getting faster.