• Title/Summary/Keyword: pH & enzyme degradation

Search Result 181, Processing Time 0.025 seconds

Reaction Conditions for Laccase Catalyzed Degradation of Bisphenol A

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-83
    • /
    • 2004
  • The oxidative degradation of BPA with laccase from Trametes versiclor was conducted in a closed, temperature controlled system containing acetate buffer for pH control. The effects of medium pH, buffer concentration, temperature and mediator on degradation of BPA were investigated. The inactivation of the enzyme by temperature and reaction product was also studied. The optimal pH for BPA degradation showed about 5. Buffer concentration did not affect BPA degradation. On the other hand, the enzyme stability was higher at low concentration buffer(25 mM). Temperature rise increased the degradation rate of BPA up to 45$^{\circ}C$. The valuable mediator of laccase for BPA was ABTS. Elevated temperature and reaction product irreversibly inactivated the enzyme.

Influence of NaCl and pH on Hydrolysis of Chicken Myofibrillar Proteins by Leukocyte Lysosomal Proteinases (Leucocyte lysosomal proteinase에 의한 닭의 근섬유(筋纖維) 단백질(蛋白質) 분해(分解)에 미치는 NaCl과 pH의 영향(影響))

  • Shinlee, Seung-Yee;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.569-574
    • /
    • 1990
  • The influence of NaCl and pH on degradation of chicken breast muscle myofibrillar proteins by porcine leukocyte lysosomal proteinases was investigated. The degradation reactions were carried out at $38^{\circ}C$ for 24hours under different conditions. The degradation of myofibrillar proteins by leukocyte lysosomal enzymes at various pH values was limited to partial hydrolysis. Reactions at higher pH values resulted in lower molecular weight degradation products while reactions at lower pH resulted in higher molecular weight degradation products. When NaCl was added into the reaction mixture, enzyme activities of degradation were increased at all pH values studied, as evidenced by NPN-analysis and SDS-PAGE. More severe degradation was observed with higher salt concentration. The concentration of 0.5M NaCl in the reaction mixture gave more degradation of myosin heavy chain by enzyme than that of 0.1M NaCl.

  • PDF

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

Studies on the Isolation of the Cholesterol Degrading Enzyme Producing Microorganism from Traditional Fermented Foods and the Culture Condition for the Production of the Enzyme (전통발효식품에서 Cholesterol Oxidase를 생산하는 미생물의 분리 및 효소생산에 관한 연구)

  • 박상현;권익부;함영태;신동훈;전억한
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.343-351
    • /
    • 1998
  • About 75 strains which utilize cholesterol as sole carbon and energy source were isolated from 10 samples of Kimchi and 18 samples of fermented fish food (2 Ojingo-jeots, salt-fermented squid ; 5 Changran-jeots, salt-fermented pollack tripe ; 5 Myungran-jeots, salt-fermented Alaska pollack roe ; 3 Gajami-sikhae-jeots, fermented flat fish ; 2 Gul-jeots, salt-fermented oyster ; a Juneo-jeots, salt-fermented shad). Among them tested, the 3T6-5Mj strain isolated from Changran-jeot showed the highest activity on cholesterol degradation. The optimal composition of medium for the producing cholesterol degradation enzyme by 3T6-5Mj strain was 1.0 g/L NH4NO3, 1.0 g/L K2HPO4, 0.1 g/L MgSO4.7H2O, 1.0 g/L FeSO4.7H2O, 1 g/L NaCl, 5 g/L Trypton, 1 g/L Cholesterol, and 5 g/L Maltose at 30$^{\circ}C$, pH 7.5, and the enzyme production reached a maximum level at 140 hours of cultivation.

  • PDF

Changes of Emulsifying and Foaming Properties of Soy Protein with an Calcium , HCI and Microbial IJ-3 Strain Enzyme

  • Park, Yang-Won;Kim, Young-Jeon
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.53-58
    • /
    • 1996
  • The characterstics of the soy protein curd(eczyme-, HCI- and Ca-surd) were shown by scanning electron micrographs and gel electrophoreis. The emulsion stability of enzyme-curd showed high value in the range of pH 2~10and wide range of temperature(20~8$0^{\circ}C$). While at the isoelectric point(pH5.0), the emulsion stability of the HCI-and Ca-curd was decreased remarkably, and the emulsion stability of temperature was reduced quickly to the 60% and 40% at the 4$0^{\circ}C$. The foam stability of enzyme-curd was slightly higher than that HCI-and CA-curd in all ranges of pH and temperature. The feature of SEM of enzyme-cured produced degradation products faster than that of the HCI- and Ca-curd.

  • PDF

Control of Enzymatic Degradability of Microbial Polyester by Surface Modification (표면 개질을 통한 미생물합성 폴리에스테르의 효소분해속도 조절)

  • 이원기
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1315-1320
    • /
    • 2002
  • Since the enzymatic degradation of microbial poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (P(3HB-co-3HV)) initially occurs by a surface erosion process, a degradation behavior could be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma gas discharge and blending techniques were used to modify the surface of microbial P(3HB-co-3HV). The surface hydrophobic property of P(3HB-co-3HV) film was introduced by CF$_3$H plasma exposure. Also, the addition of small amount of polystyrene as a non-degradable polymer with lower surface energy to P(3HB-co-3HV) has been studied. The enzymatic degradation was carried out at 37 $^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. Both results showed the significant retardation of enzymatic erosion due to the hydrophobicity and the enzyme inactivity of the fluorinated- and PS-enriched surface layers.

Affect of Corrosion Potential and Current Density on Polarization Curves Variations of Polyvinylchloride[II]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.159-167
    • /
    • 1999
  • This study performed experiments for measuring corrosion potential and current density variations in the polarzation curves of polyvinylchloride. The results were examined to identify particular influences affectingthe corrosion potential such as temperature, pH, enzyme, and salt. The lines representing active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme and salt. The Tafel slope for the anodic dissolution was determined using the polarization effect with varying conditions. The slope of the polarization curves describing the active-to-passive transition region was noticeably shifted in the potential direction. In addition, using the variation in conditions, the best temperature and pH were determined for the corrosion rate, and resistance of corrosion. The second anodic current density peak and maximum passive current density were designated as degraded(IP/I0). The value of IP/I0 was used in measuring the extent of the degradation of the polyvinychloride. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

Degradation and Preparation of Blend Films Using Natural Polymers Chitosan and Algin (키토산과 알긴을 이용한 블랜드필름의 제조와 분해)

  • 류정욱;이홍열;오세영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.417-422
    • /
    • 1999
  • Algin and chitosan are known as biodegradable natural polymers. PVA is useful for the production of water soluble packaging, paper, textile sizes. PVA/Algin and PVA/chitosan films were prepared by solution blends method in the weight ratio of chitosan, algin for the purpose of useful biodegradable films. Thermal and mechanical properties of blend films such as DSC, impact strength, tensile strength and morphology by SEM were determined. As a result, The ratio of 10.0wt% PVA/chitosan films were similar to PVA at thermal and mechanical properties. PVA/Algin films were found that phase separation was occured as more than 25wt% increasing the blend ratio of algin. PVA/Algin films were observed to be less partially compatibility than 10wt% increasing the blend ratio of algin by DSC, mechanical properties and SEM. Blend films were completely degraded pH 4.0 better than 7.0, 10.0 in the buffer solution. Also, they were rapidly degraded in the enzyme( glucosidase) solution better than pH solution by enzymolysis.

  • PDF

Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation

  • Sanjay K. S. Patel;Vipin C. Kalia;Jung-Kul Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.127-134
    • /
    • 2023
  • Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4℃). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45℃) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65℃ and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.

Saci_1816: A Trehalase that Catalyzes Trehalose Degradation in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

  • Lee, Junho;Lee, Areum;Moon, Keumok;Choi, Kyoung-Hwa;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.909-916
    • /
    • 2018
  • Previously, a cytosolic trehalase (TreH) from the hyperthermophilic archaeon Sulfolobus acidocaldarius was reported; however, the gene responsible for the trehalase activity was not identified. Two genes, saci_1816 and saci_1250, that encode the glycoside hydrolase family 15 type glucoamylase-like proteins in S. acidocaldarius were targeted and expressed in Escherichia coli, and their abilities to hydrolyze trehalose were examined. Recombinant Saci_1816 hydrolyzed trehalose exclusively without any help from a cofactor. The mass spectrometric analysis of partially purified native TreH also confirmed that Saci_1816 was involved in proteins exhibiting trehalase activity. Optimal trehalose hydrolysis activity of the recombinant Saci_1816 was observed at pH 4.0 and $60^{\circ}C$. The pH dependence of the recombinant enzyme was similar to that of the native enzyme, but its optimal temperature was $20-25^{\circ}C$ lower, and its thermostability was also slightly reduced. From the biochemical and structural results, Saci_1816 was identified as a trehalase responsible for trehalose degradation in S. acidocaldarius. Identification of the treH gene confirms that the degradation of trehalose in Sulfolobus species occurs via the TreH pathway.