• Title/Summary/Keyword: p53 pathway

Search Result 253, Processing Time 0.036 seconds

Dishevelling Wnt and Hippo

  • Kim, Nam Hee;Lee, Yoonmi;Yook, Jong In
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.425-426
    • /
    • 2018
  • As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to ${\beta}-catenin$ in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, ${\alpha}-catenin$, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Effect of Citrus macroptera Fruit Pulp Juice on Alteration of Caspase Pathway Rendering Anti-Proliferative Activity against Ehrlich's Ascites Carcinoma in Mice

  • Hasan, Md. Mahmudul;Islam, Md. Shihabul;Hoque, Kazi Md. Faisal;Haque, Ariful;Reza, Md Abu
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.271-277
    • /
    • 2019
  • Citrus macroptera (Rutaceae) has long been used in folk medicine in Bangladesh. Considering the folkloric context, this study was aimed to scrutinize anti-proliferative activity of C. macroptera fruit pulp juice (CMFPJ) against Ehrlich's ascites carcinoma (EAC). The anti-proliferative capacity of CMFPJ was investigated and confirmed primarily using MTT assay. In vivo anti-proliferative aptitude of CMFPJ was investigated with 25, 50, and 100 mg/kg/day intraperitoneal (i.p.) treatment. Anti-proliferative efficacy of CMFPJ was assessed based on EAC growth inhibition. CMFPJ inhibited EAC growth in vitro in a dose-dependent manner. And the percentages of in vivo EAC growth inhibition were 19.53, 49.2, and 68.9% at 25, 50, and 100 mg/kg CMFPJ respectively. CMFPJ significantly induced expression of apoptosis regulatory genes caspase-8, caspase-9, cytochrome-c, and caspase-3. This considerable anti-cancer activity was perhaps due to combinatorial effect of lectin, polyphenols, and flavonoids present in CMFPJ.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Detection and Characterization of PCR-SSCP Markers of the Bovine Lactoferrin Gene for Clinical Mastitis

  • Zhou, Lei;Yang, Yuan-Yuan;Li, Zhong-Hao;Kong, Li-Juan;Xing, Guan-Dong;Di, He-Shuang;Wang, Gen-Lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1399-1403
    • /
    • 2006
  • A total of 80 cows, including 40 top mastitis resistant and 40 top mastitis susceptible animals as Group I and Group II, were selected from a population of 520 cows based on clinical mastitis occurrence. PCR-SSCP analysis on four fragments within the 5'region and two fragments of Exons 4,15 of bovine lactoferrin (bLF) revealed that four fragments-P1,P4,E4,E15-had polymorphisms which totally included six base mutations, and only two of them had significant differences in allele frequencies between resistant and susceptible groups, P1 (53.7% vs. 70.0%, p<0.05) and P4 (55.0% vs. 68.8%, p<0.05). Further study on these two promising markers combined with the milk performance traits of cows demonstrated that their selection would result in higher fat percentage (p<0.05), lower Somatic Cell Score (SCS) (p<0.05) and Clinical Mastitis Residuals (CMR) (p<0.01) indicating higher mastitis resistance and lower milk yield (p<0.05). The putative transcription factor binding sites in the 5'region were also studied by using MatInspector 7.2.2 software, and two signal pathways regulating the expression of bLF including the NF-${\kappa}B$ pathway and nuclear hormone receptor pathway were predicted.

Significance of $p27^{kip1}$ as potential biomarker for intracellular oxidative status

  • Quintos, Lesley;Lee, In-Ae;Kim, Hyo-Jung;Lim, Ji-Sun;Park, Ji-A;Sung, Mi-Kyung;Seo, Young-Rok;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.351-355
    • /
    • 2010
  • Our previous proteomic study demonstrated that oxidative stress and antioxidant delphinidin regulated the cellular level of $p27^{kip1}$ (referred to as p27) as well as some heat shock proteins in human colon cancer HT 29 cells. Current study was conducted to validate and confirm the regulation of these proteins using both in vitro and in vivo systems. The level of p27 was decreased by hydrogen peroxide in a dose-dependent manner in human colon carcinoma HCT 116 (p53-positive) cells while it was increased upon exposure to hydrogen peroxide in HT 29 (p53-negative) cells. However, high concentration of hydrogen peroxide (100 ${\mu}M)$ downregulated p27 in both cell lines, but delphindin, one of antioxidative anthocyanins, enhanced the level of p27 suppressed by 100 ${\mu}M$ hydrogen peroxide. ICR mice were injected with varying concentrations of hydrogen peroxide, delphinidin and both. Western blot analysis for the mouse large intestinal tissue showed that the expression of p27 was upregulated by 25 mg/kg BW hydrogen peroxide. To investigate the association of p27 regulation with hypoxia-inducible factor 1-beta (HIF-$1{\beta}$), the level of p27 was analyzed in wild-type mouse hepatoma hepa1c1c7 and Aryl Hydrocarbon Nuclear Translocator (arnt, HIF-$1{\beta}$)-defective mutant BPRc1 cells in the absence and presence of hydrogen peroxide and delphinidin. While the level of p27 was responsive to hydrogen peroxide and delphinidin, it remained unchanged in BPRc1, suggesting that the regulation of p27 requires functional HIF-$1{\beta}$. We also found that hydrogen peroxide and delphinidin affected PI3K/Akt/mTOR signaling pathway which is one of upstream regulators of HIFs. In conclusion, hydrogen peroxide and antioxidant delphinidin seem to regulate intracellular level of p27 through regulating HIF-1 level which is, in turn, governed by its upstream regulators comprising of PI3K/Akt/mTOR signaling pathway. The results should also encourage further study for the potential of p27 as a biomarker for intracellular oxidative or antioxidant status.

The Expression of Oncogenes on the Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line (SCK 선암세포주에서 방사선 조사에 의해 유도되는 Apoptosis에 미치는 암유전자의 발현)

  • Lee Hyung Sik;Park Hong Kyu;Moon Chang Woo;Yoon Seon Min;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Sang Hwa
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 1999
  • Purpose : The expression of p53, P211WAF/CIP, Bcl-2, and Bax underlying the radiation-induced apoptosis in different pH environments using SCK mammary adenocarcinoma cell line was investigated. Materials and Methods Mammary adenocarcinoma cells of hi) mice (SCK cells) in exponential growth phase were irradiated with a linear accelerator at room temperature. The cells were irradiated with 12 Gy and one hour later, the media was replaced with fresh media at a different pHs. After Incubation at 37Microbioiogy, College of Medicine Dong A University for 0$\~$48 h, the extort of apoptosis was determined using agarose gel electrophoresis and flow cytometry. The progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Western blot analysis was used to monitor p53, p211WAFfCIP, Bcl-2, and Bu protein levels. Results : The induction of apoptosis by irradiation in pH 6.6 medium was markedly less than that in pH 7.5 medium. The radiation-induced G2IM arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Considerable amounts of p53 and p21 proteins already existed at pH 7.5 and increased the level of p53 and p21 significantly after 12 Gy X-irradiation. An incubation at pH 6.6 after 12 Gy X-irradiation did not change the level of p53 and p21 protein levels significantly. Bcl-2 proteins were not significantly affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis in different pHs. An exposure to 12 Gy of X-rays increased the level of Bax protein at pH 7.5 but at pH 6.6, it was slight. Conclusions : The molecular mechanism underlying radiation-induced apoptosis in dinerent pH environments using SCK mammary adenocarcinoma cell line was dependent of the expression p53 and P211YVAF/CIP proteins. We may propose following hypothesis that an acidic stress augments the radiation-induced G2iM arrest, which inhibiting the irradiated cells undergo post-mitotic apoptosis. The effects of environmental acidity on anti-apoptotic and pro-apoptotic function of Bcl-2 family was unclear in SCK mammary adenocarcinoma cell line.

  • PDF

Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells

  • Jang, Da Eun;Song, Junbin;Park, Jeong-Woo;Yoon, Soo-Hyun;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.272-277
    • /
    • 2020
  • Protein kinase CK2 downregulation induces premature senescence in various human cell types via activation of the reactive oxygen species (ROS)-p53-p21Cip1/WAF1 pathway. The transcription factor "nuclear factor erythroid 2-related factor 2" (Nrf2) plays an important role in maintaining intracellular redox homeostasis. In this study, Nrf2 overexpression attenuated CK2 downregulation-induced ROS production and senescence markers including SA-β-gal staining and activation of p53-p21Cip1/WAF1 in human breast (MCF-7) and colon (HCT116) cancer cells. CK2 downregulation reduced the transcription of Nrf2 target genes, such as glutathione S-transferase, glutathione peroxidase 2, and glutathione reductase 1. Furthermore, CK2 downregulation destabilized Nrf2 protein via inhibiting autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Finally, CK2 downregulation decreased the nuclear import of Nrf2 by deactivating AMP-activated protein kinase (AMPK). Collectively, our data suggest that both Keap1 stabilization and AMPK inactivation are associated with decreased activity of Nrf2 in CK2 downregulation-induced cellular senescence.

Transcriptional Alteration of p53 Related Processes As a Key Factor for Skeletal Muscle Characteristics in Sus scrofa

  • Kim, Seung-Soo;Kim, Jung-Rok;Moon, Jin-Kyoo;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Kwan-Suk;Kim, Jong-Joo;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.565-573
    • /
    • 2009
  • The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.

Micro RNA 34a and Let-7a Expression in Human Breast Cancers is Associated with Apoptotic Expression Genes

  • Behzad, Mansoori;Ali, Mohammadi;Solmaz, Shirjang;Elham, Baghbani;Behzad, Baradaran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1887-1890
    • /
    • 2016
  • Breast cancer is the most common cause of cancer-related death among women in the whole world. MiR- 34a and let-7a are well known tumor suppressors that participate in the regulation of apoptosis, invasion and other cellular functions. In this study, expression of miR-34a, let-7a and apoptosis pathway genes such as Bcl-2, Caspase-3 and P53 were evaluated using quantitative real-time PCR in 45 paired samples of normal margin and tumor tissue collected from breast cancer patient at advanced stage (3-4). MiR-34a, let-7a, caspase-3 and P53 expression are reduced and Bcl-2 expression is increased within tumoral tissues in comparison with normal margin tissues. P53 expression directly or indirectly was correlated with miR-34a, let-7a, Bcl-2 and caspase-3 expression. In This study we found that MiR-34a and let-7a expression are reduced in the tumoral tissues. Down-regulation of these two molecules correlated with expression of genes associated with apoptosis. These results suggest that due to the correlation of miR-34a and let-7a with apoptotic and anti-apoptotic pathways these molecules could participate as regulators in advanced clinical stages of breast cancer and should be considered as markers for diagnosis, prognostic assessment and targeted therapy.