• 제목/요약/키워드: p53 expression

검색결과 965건 처리시간 0.035초

Loss of Heterozygosity at the Calcium Regulation Gene Locus on Chromosome 10q in Human Pancreatic Cancer

  • Long, Jin;Zhang, Zhong-Bo;Liu, Zhe;Xu, Yuan-Hong;Ge, Chun-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2489-2493
    • /
    • 2015
  • Background: Loss of heterozygosity (LOH) on chromosomal regions is crucial in tumor progression and this study aimed to identify genome-wide LOH in pancreatic cancer. Materials and Methods: Single-nucleotide polymorphism (SNP) profiling data GSE32682 of human pancreatic samples snap-frozen during surgery were downloaded from Gene Expression Omnibus database. Genotype console software was used to perform data processing. Candidate genes with LOH were screened based on the genotype calls, SNP loci of LOH and dbSNP database. Gene annotation was performed to identify the functions of candidate genes using NCBI (the National Center for Biotechnology Information) database, followed by Gene Ontology, INTERPRO, PFAM and SMART annotation and UCSC Genome Browser track to the unannotated genes using DAVID (the Database for Annotation, Visualization and Integration Discovery). Results: The candidate genes with LOH identified in this study were MCU, MICU1 and OIT3 on chromosome 10. MCU was found to encode a calcium transporter and MICU1 could encode an essential regulator of mitochondrial $Ca^{2+}$ uptake. OIT3 possibly correlated with calcium binding revealed by the annotation analyses and was regulated by a large number of transcription factors including STAT, SOX9, CREB, NF-kB, PPARG and p53. Conclusions: Global genomic analysis of SNPs identified MICU1, MCU and OIT3 with LOH on chromosome 10, implying involvement of these genes in progression of pancreatic cancer.

Changes in oncogenic protein levels in peri-implant oral malignancy: a case report

  • Seo, Mi Hyun;Myoung, Hoon;Lee, Jong Ho;Kim, Soung Min;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.46.1-46.9
    • /
    • 2019
  • Background: Oral squamous cell carcinoma (OSCC) constitutes a group of tumors that exhibit heterogeneous biology, histopathology, and clinical behaviors. Case presentation: A 73-year-old male had a whitish leukoplakia-like lesion around inflamed peri-implant area (#42, #43, and #44), and this lesion had transformed to OSCC within 3 years. He underwent mass resection, selective neck dissection, and reconstructive surgery. To detect any carcinogenesis progression, we examined the removed tumor tissue as well as the patient's preoperative and postoperative sera to identify causative oncogenic proteins using immunoprecipitation high-performance liquid chromatography (IP-HPLC). Conclusions: The protein expression levels of p53, E-cadherin, β-catenin, MMP-10, HER2, NRAS, Met, HER2, and ERb were significantly lower in the serum collected on postoperative day 10 than in the preoperative serum, and if these proteins are consistently not elevated in the serum 3 months after surgery compared with the preoperative serum, these proteins can be potential oncogenic proteins. However, we also found that the serum extracted 3 months after the operation had elevated levels of oncogenic proteins compared with that of the preoperative and 10-day postoperative serum indicating the possibility of tumor recurrence. At postoperative follow-up period, ipsilateral neck metastasis and second primary lesion were found and additional surgery was performed to the patient. IP-HPLC using the patient's serum shows the possibility of oncogenic protein detection. However, follow-up IP-HPLC data is needed to find out patient-specific prognostic factors.

Disease Free Survival among Molecular Subtypes of Early Stage Breast Cancer between 2001 and 2010 in Iran

  • Najafi, Behrouz;Anvari, Saeid;Roshan, Zahra Atrkar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5811-5816
    • /
    • 2013
  • Background: Breast cancer is the most common cancer among women. Molecular subtypes are important in determining prognosis. This study evaluated five-year disease-free survival among four molecular subtypes in patients with early stages of breast cancer. Materials and Methods: In this retrospective descriptive-analytical study, information on patients with breast cancer between 2001-2010 was evaluated. Five hundred ninety two patients in the early stages of breast cancer (stages 1 and 2) were selected to undergo anthracycline-based chemotherapy. Relapse, death or absence (censor) were considered as the end of the study. Patients based on ER, PR and HER-2 expression were divided into four subtypes (luminal A, luminal B, HER-2 enriched and triple negative). Information based upon questionnaire was analysed. To show the patients survival rate, life table and Kaplan-Meyer methods were used, and for comparing mean survival among different groups, the Log-Rank test was utilized. Results: Mean age at diagnosis was $47.9{\pm}9.6$. Out of the 592 patients, 586 were female (99%) and 6 were male (1%). Considering breast cancer molecular subtypes, 361 patients were in the luminal A group (61%), 49 patients in the luminal B group (8.3%), 48 patients in the HER-2 enriched group (8.1%) and 134 in the triple negative group (22.6%). Mean disease-free survival was 53.7 months overall, 55.4 months for the luminal A group, 48.3 months for the luminal B group, 43 months for the HER-2enriched group and 54.6 months for the triple negatives. Disease free survival differed significantly among the molecular subtypes (p value=0.0001). Conclusions: The best disease-free survival rate was among the luminal A subgroup and the worst disease-free survival rate was among the HER-2 enriched subgroup. Disease free survival rate in the HER-2 positive groups (luminal B and HER-2 enriched) was worse than the HER-2 negative groups (luminal A and triple negative).

Autophagy Inhibition Sensitizes Cisplatin Cytotoxicity in Human Gastric Cancer Cell Line Sgc7901

  • Zhang, Hui-Qing;He, Bo;Fang, Nian;Lu, Shan;Liao, Yu-Qian;Wan, Yi-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4685-4688
    • /
    • 2013
  • We aimed to investigate the mechanism and effects of autophagy on cisplatin (DDP)-induced apoptosis in human gastric cancer cell line SGC7901. After SGC7901 cells were treated with DDP and/or chloroquine, cell proliferation was measured using MTT assay; cell apoptosis was determined by flow cytometry; autophagy and apotosis-related proteins expression were detected by Western blot; and quantitative analysis of autophagy after monodansylcadaverine (MDC) staining was performed using fluorescence microscopy. We found after treatment with 5 mg/L DDP for 24 h, the rates of cell apoptosis were ($21.07{\pm}2.12$)%. Autophagy, characterized by an increase in the number of autophagic vesicles and the level of LC3-II protein was observed in cells treated with DDP. After inhibition of autophagy by chloroquine, the rates of cell apoptosis were increased to ($30.16{\pm}3.54$)%, and the level of Caspase-3 and P53 protein were increased, and Bcl-2 protein was decreased. Therefore, autophagy protects human gastric cancer cell line SGC7901 against DDP-induced apoptosis, inhibition of autophagy can promote apoptosis, and combination therapy with DDP and chloroquine may be a promising therapeutic strategy for gastric cancer.

Hypermethylation of Promoter Region of LATS1 - a CDK Interacting Protein in Oral Squamous Cell Carcinomas - a Pilot Study in India

  • Reddy, Vijaya Ramakrishna;Annamalai, Thangavelu;Narayanan, Vivek;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1599-1603
    • /
    • 2015
  • Background: Epigenetic silencing of tumor suppressor genes due to promoter hypermethylation is one of the frequent mechanisms observed in cancers. Hypermethylation of several tumor suppressor genes involved in cell cycle regulation has been reported in many types of tumors including oral squamous cell carcinomas. LATS1 (Large Tumor Suppressor, isoform 1) is a novel tumor suppressor gene that regulates cell cycle progression by forming complexes with the cyclin dependent kinase, CDK1. Promoter hypermethylation of the LATS1 gene has been observed in several carcinomas and also has been linked with prognosis. However, the methylation status of LATS1 in oral squamous cell carcinomas is not known. As oral cancer is one of the most prevalent forms of cancer in India, the present study was designed to investigate the methylation status of LATS1 promoter and associate it with histopathological findings in order to determine any associations of the genetic status with stage of differentiation. Materials and Methods: Tumor chromosomal DNA isolated from biopsy tissues of thirteen oral squamous cell carcinoma biopsy tissues were subjected to digestion with methylation sensitive HpaII enzyme followed by amplification with primers flanking CCGG motifs in promoter region of LATS1 gene. The PCR amplicons were subsequently subjected to agarose gel electrophoresis along with undigested amplification control. Results: HpaII enzyme based methylation sensitive PCR identified LATS1 promoter hypermethylation in seven out of thirteen oral squamous cell carcinoma samples. Conclusions: The identification of LATS1 promoter hypermethylation in seven oral squamous cell carcinoma samples (54%), which included one sample with epithelial dysplasia, two early invasive and one moderately differentiated lesions indicates that the hypermethylation of this gene may be one of the early event during carcinogenesis. To the best of our knowledge, this is the first study to have explored and identified positive association between LATS1 promoter hypermethylation with histopathological features in oral squamous cell carcinomas.

규조류 및 유산균 첨가 사료 공급에 따른 넙치(Paralichthys olivaceus)의 성장 및 비특이적 면역 촉진 반응에 미치는 영향 (Effect of Dietary Supplementation of Diatom Melosira nummuloides and Lactic Acid Bacteria Lactobacillus plantarum on the Growth and Immune Stimulation Responses of Olive Flounder Paralichthys olivaceus)

  • 노윤혜;김기혁;문혜나;고경민;여인규
    • 한국수산과학회지
    • /
    • 제53권4호
    • /
    • pp.597-605
    • /
    • 2020
  • The diatom Melosira nummuloides is a microalga that is widely distributed in freshwater and seawater is used is used in the production of silicon and fucoxanthin. The objective of this experimental study was to determine the effects of diatom powder on the physiology of olive flounder Paralichthys olivaceus. In four feeding groups consuming 0%, 1%, 2% and 3% diatom powder. After 8 weeks of feeding, we investigated P. olivaceus growth rate, feed efficiency rate, survival rate, anti-oxidant enzyme rate, non-specific immune activity and immune gene expression. The rates of growth rate, feed efficiency rate and survival were significantly higher for olive flounder in all diatom groups than in the control. The results for anti-oxidant enzyme, superoxide dismutase and catalase showed no significance, but glutathione was significant, depending on the concentration of diatom addition. The galectin and lysozymes of immune genes were increased in the control group. Galectin and lysozymes were thought to have increased due to infections by from pathogens during the experiment period. These results suggest that the addition of diatoms to olive flounder diets is effective in enhancing growth rate and innate immunity.

Synergistic Effects of Chios Gum Mastic Extract and Low Level Laser Therapy on Osteoblast Differentiation

  • Lee, Ki-Hyun;Kim, Young-Seok;Yu, Su-Bin;Kang, Hae-Mi;Kwak, Hyun-Ho;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제41권2호
    • /
    • pp.53-62
    • /
    • 2016
  • In the present study, we evaluated the effect of CGM on osteogenic differentiation of cultured osteoblasts, and determined whether combination treatment with LLLT had synergistic effects on osteogenic differentiation. The results indicated that CGM promoted proliferation, differentiation, and mineralization of osteoblasts at the threshold concentration of $10{\mu}g/ml$; whereas, CGM showed cytotoxic properties at concentrations above $100{\mu}g/ml$. ALP activity and mineralization were increased at concentrations above $10{\mu}g/ml$. CGM in concentrations up to $10{\mu}g/ml$ also increased the expression of osteoblast-activated factors including type I collagen, BMP-2, RUNX2, and Osterix. The CGM ($50{\mu}g/ml$) and LLLT (80 mW for 15 sec) combination treatment group showed the highest proliferation levels, ALP activity, and mineralization ratios. The combination treatment also increased the levels of phosphorylated forms of p38, ATF2, PKD, ERK, and JNK. In addition, the osteoblast differentiation factors including type I collagen, BMP-2, RUNX2, and Osterix protein levels were clearly increased in the combination treatment group. These results suggested that the combination treatment of CGM and LLLT has synergistic effects on the differentiation and mineralization of osteoblastic cells.

Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

  • Shin, Kyong-Oh;Park, Nam-Young;Seo, Cho-Hee;Hong, Seon-Pyo;Oh, Ki-Wan;Hong, Jin-Tae;Han, Sang-Kil;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.470-476
    • /
    • 2012
  • Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol ($100{\mu}M$) for 24 hr induced cell death and cell cycle arrest in gastric cancer cells. Exposure to the combination of resveratrol and dimethylsphingosine (DMS) increased cytotoxicity, demonstrating that sphingolipid metabolites intensify resveratrol activity. Specifically, DHCer accumulated in a resveratrol concentration-dependent manner in SNU-1 and HT-29 cells, but not in SNU-668 cells. LC-MS/MS analysis showed that specific DHCer species containing C24:0, C16:0, C24:1, and C22:0 fatty acids chain were increased by up to 30-fold by resveratrol, indicating that resveratrol may partially inhibit DHCer desaturase. Indeed, resveratrol mildly inhibited DHCer desaturase activity compared to the specific inhibitor GT-11 or to retinamide (4-HPR); however, in SNU-1 cells resveratrol alone exhibited a typical cell cycle arrest pattern, which GT-11 did not alter, indicating that inhibition of DHCer desaturase is not essential to the cytotoxicity induced by the combination of resveratrol and sphingolipid metabolites. Resveratrol-induced p53 expression strongly correlated with the enhancement of cytotoxicity observed upon combination of resveratrol with DMS or 4-HPR. Taken together, these results show that DHCer accumulation is a novel lipid biomarker of resveratrol-induced cytotoxicity in human gastric cancer cells.

Mechanisms of 5-azacytidine-induced damage and repair process in the fetal brain

  • Ueno, Masaki
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2006년도 추계학술대회
    • /
    • pp.55-64
    • /
    • 2006
  • The fetal central nervous system (CNS) is sensitive to diverse environmental factors, such as alcohol, heavy metals, irradiation, mycotoxins, neurotransmitters, and DNA damage, because a large number of processes occur during an extended period of development. Fetal neural damage is an important issue affecting the completion of normal CNS development. As many concepts about the brain development have been recently revealed, it is necessary to compare the mechanism of developmental abnormalities induced by extrinsic factors with the normal brain development. To clarify the mechanism of fetal CNS damage, we used one experimental model in which 5-azacytidine (5AZC), a DNA damaging and demethylating agent, was injected to the dams of rodents to damage the fetal brain. 5AzC induced cell death (apoptosis)and cell cycle arrest in the fetal brain, and it lead to microencephaly in the neonatal brain. We investigated the mechanism of apoptosis and cell cycle arrest in the neural progenitor cells in detail, and demonstrated that various cell cycle regulators were changed in response to DNA damage. p53, the guardian of genome, played a main role in these processes. Further, using DNA microarray analysis, tile signal cascades of cell cycle regulation were clearly shown. Our results indicate that neural progenitor cells have the potential to repair the DNA damages via cell cyclearrest and to exclude highly affected cells through the apoptotic process. If the stimulus and subsequent DNA damage are high, brain development proceeds abnormally and results in malformation in the neonatal brain. Although the mechanisms of fetal brain injury and features of brain malformation afterbirth have been well studied, the process between those stages is largely unknown. We hypothesized that the fetal CNS has the ability to repair itself post-injuring, and investigated the repair process after 5AZC-induced damage. Wefound that the damages were repaired by 60 h after the treatment and developmental processes continued. During the repair process, amoeboid microglial cells infiltrated in the brain tissue, some of which ingested apoptotic cells. The expressions of genes categorized to glial cells, inflammation, extracellular matrix, glycolysis, and neurogenesis were upregulated in the DNA microarray analysis. We show here that the developing brain has a capacity to repair the damage induced by the extrinsic stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.

  • PDF

Independent Inheritance between df2 gene and ti gene in Soybean

  • Han, Eun-Hui;Sung, Mi-Kyung;Kim, Kyung-Roc;Park, Jung-Soo;Nam, Jin-Woo;Chung, Jong-Il
    • 한국작물학회지
    • /
    • 제56권1호
    • /
    • pp.14-17
    • /
    • 2011
  • Dwarfuess and Kunitz trypsin inhibitor (KTI) protein in soybean is useful traits for basic studies. df2 and ti gene control dwarfness and the expression of Kunitz trypsin inhibitor (KTI) protein in soybean, respectively. The objective of this research was to verify genetic linkage or independent inheritance of df2 and ti loci in soybean. The $F_2$ population was made by cross combination between "Gaechuck#2" (Df2Df2titi genotype, KTI protein absence and a normal growth type) and T210 (df2df2TiTi genotype, a dwarf growth type and KTI protein present). A total of 258 $F_2$ seeds were analyzed for the segregation of KTI protein using SDS-PAGE. And so, 198 $F_2$ plants were recorded for the segregation of dwarfness. The segregation ratio of 3 : 1 for Ti locus (201 Ti_ : 57 titi) and Df2 locus (143 Df2_ : 55 df2df2) was observed. Segregation ratio of 9 : 3 : 3 : 1 (116 Ti_Df2_: 44 Ti_df2df2: 27 titiDf2_: 11 titidf2df2) between df2 gene and ti gene was observed ($x^2$=3.53, P = 0.223). These results showed that df2 gene was inherited independently with the ti gene in soybean.