• Title/Summary/Keyword: p53 and pRB

Search Result 82, Processing Time 0.021 seconds

The Effects of Somatid on the Cytotoxicity of Cancer Cells and Human Papillomavirus Type 16 E6 and E7 Oncogenes (생기액(生肌液)의 세포독성 및 자궁경부암 바이러스 (HPV 16 type) 암 유발인자 E6와 E7의 작용에 미치는 효과)

  • Joung, Ok;Cho, Young-Sik;Cho, Cheong-Weon;Lee, Kyung-Ae;Shim, Jung-Hyun;Cho, Min-Chul;Lee, Hong-Soo;Yeom, Young-Il;Kim, Sang-Bom;Park, Sue-Nie;Yoon, Do-Young
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.340-346
    • /
    • 2000
  • Cervical cancer is one of the leading causes of female death from cancer worldwide with about 500,000 deaths per year. A strong association between certain human papilloma viruses (HPV types 16 and 18) and cervical cancer has been well known. An extract of natural products, named as Somatid, has been used to investigate whether this agent has the ability of inhibiting the oncogenes E6 and E7 of HPV type 16. This Somatid inhibited the proliferation of human cervical cancer cell lines (C-33A, SiHa, CaSki) and HaCaT keratinocytes in a dose response manner, In vitro binding assay and ELISA showed that Somatid inhibited the in vitro biding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53. In addition, Somatid inhibited the in vitro binding of E7 and Rb which is essential tumor suppressor for the control of cell cycle. The levels of mRNA for E6 and E7 were also decreased by Somatid. Our data suggested that Somatid inhibited the oncogenecity of E6 and E7 of HPV 16 type, thus can be used as a putative anti-HPV agent for the treatment of cervical carcinomas caused by HPV.

  • PDF

NELL2 gene as regulator of cell cycle in neuron differentiation (신경세포 분화에서 세포주기 조절인자로서의 NELL2 유전자의 역할)

  • Joung, Mi Rim;Oh, Yeon Mi;Park, Woo Saeng;Park, Sang Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.10
    • /
    • pp.1100-1105
    • /
    • 2006
  • Purpose : Because NELL2 expression is strictly restricted only in neurons in developing and post-differentiated neural tissues, it is thought to be involved in the neuronal differentiation during development and in the maintenance of neuronal physiology in the post-differentiated neurons. In this study, we examined whether NELL2 is involved in the regulation of cell cycle and apoptosis in the hippocampal neuroprogenitor HiB5 cells. Methods : Effects of NELL2 on the cultured HiB5 cell numbers, DNA fragmentation, and proteins involved in the regulation of the cell cycle were measured. Results : NELL2 induced a decrease in cell numbers and an increase in G1 phase arrest. Moreover, transfection of NELL2 resulted in an increase of DNA fragmentation that shows an evidence of apoptosis. Contents of proteins involved in the regulation of cell cycle were also changed by transfection of NELL2 expression vectors. Conclusion : This study suggests that NELL2 plays an important role in the regulation of cell cycle and apoptosis of neurons.