• Title/Summary/Keyword: p38kinase

Search Result 640, Processing Time 0.025 seconds

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

Nerve Growth Factor Activates Brain-derived Neurotrophic Factor Promoter IV via Extracellular Signal-regulated Protein Kinase 1/2 in PC12 Cells

  • Park, So Yun;Lee, Ji Yun;Choi, Jun Young;Park, Mae Ja;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.237-243
    • /
    • 2006
  • Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.

Immunomodulatory effect of the water extract of Aster tataricus through mitogen-activated protein kinase signaling pathway (Aster tataricus 물 추출물의 mitogen-activated protein kinase 신호 전달 경로를 통한 면역 조절 효과)

  • Lee, Chea Yeon;Park, Hyo Sung;Kong, Deok-Hoon;Kim, Young Kwan;Cho, Whajung
    • Journal of Nutrition and Health
    • /
    • v.53 no.5
    • /
    • pp.452-463
    • /
    • 2020
  • Purpose: Aster tataricus (AT) is one of the Asteraceae perennial herbs used in traditional Chinese medicine. The herb contains various bioactive substances, such as flavonoids, isoflavonoids, and phenolic compounds in the roots, and exhibits a range of effects including anti-bacterial, anti-oxidant, and anti-inflammatory activities. This study compared the immunomodulatory effects of ethanol and water extracts of whole AT, except the roots, and analyzed the molecular mechanisms for the regulatory effects on cytokine secretion from THP-1 cells. Methods: The effects of AT extract on the cell viability and proliferation of THP-1 cells were analyzed using the Cell Counting Kit-8 method. The concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of the AT-treated THP-1 cells were measured using an enzyme-linked immunosorbent assay. The protein levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inhibitor of nuclear factor kappa B (IκBα), and mitogen-activated protein kinase (MAPK) phosphorylation in the cell lysates were determined by western blotting. Results: The water extract and the ethanol extract of AT did not affect the cell viability, and increased the proliferation of THP-1 cells significantly compared to the vehicle. The water extract increased the secretion of IL-1β from THP-1 cells in a dose-dependent manner, but the ethanol extract had no effect. The expression of COX-2 and iNOS protein and the phosphorylation of MAPK and Akt were induced in AT-treated cells. In addition, IκBα was degraded by AT in a concentration-dependent manner. IL-1β secretion by AT was reduced by extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors, while TNF-α secretion was decreased by inhibitors of ERK, p38 MAPK, and JNK. Interestingly, the p38 MAPK inhibitor increased the production of IL-1β by AT further. Conclusion: The water extract of the above-ground parts of AT contains immunomodulatory bioactive substances that stimulate immune cells through the MAPK signaling pathway.

Molecular Mechanisms of Protein Kinase C-induced Apoptosis in Prostate Cancer Cells

  • Gonzalez-Guerrico, Anatilde M.;Meshki, John;Xiao, Liqing;Benavides, Fernando;Conti, Claudio J.;Kazanietz, Marcelo G.
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.639-645
    • /
    • 2005
  • Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. $PKC{\delta}$, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of $PKC{\delta}$ totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical $PKC{\alpha}$ promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to $PKC{\varepsilon}$, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. $PKC{\delta}$ stimulates the release of $TNF{\alpha}$ from the plasma membrane, and blockade of $TNF{\alpha}$ secretion or $TNF{\alpha}$ receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.

Effects of FBS(Fetal Bovine Serum) and pFF(Porcine Follicular Fluid) on In Vitro Maturation and Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Moon, Hyo-Jin;Shim, Joo-Hyun;Hwang, In-Sun;Park, Mi-Rung;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Park, Choon-Keun;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • In this study, in vitro maturation system using fetal bovine serum (FBS) or porcine follicular fluid (pFF) was investigated to produce comparable oocytes to those derived from in vivo. Control group of oocytes was cultured in TCM 199 supplemented with 0.1% polyvinyl alcohol (PVA). Other three groups of oocytes were cultured in TCM 199 supplemented with 10% FBS, 10% pFF or 5% FBS + 5% pFF, respectively. After 44 h maturation, oocytes with the first polar body were activated with two electric pulses (DC) of 1.2 kv/cm for 30 ${\mu}sec$. Also, matured oocytes of four groups were reconstructed and fused. Reconstructed embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. The oocytes matured in the medium supplemented with FBS or/and pFF showed significantly higher maturation rates (64.0 vs. 73.9 to 85.2%). In PA embryos, cleavage rates (89.7 vs. 77.1 to 86.6%) and blastocysts rates (30.0 vs. 16.2 to 26.2%) were significantly higher in pFF group (p<0.05). In NT embryos, there was no difference among treatments in cleavage rate, but the blastocyst rates (28.5 vs. 15.5 to 24.6%) were significantly higher in pFF group (p<0.05). The apoptosis rate was significantly higher (p<0.05) in the control than other groups (10.8 vs. 4.9 to 8.2% for PA, 3.1 vs. 0.5 to 1.3% for NT). In order to select the comparable oocyte to in vivo oocytes, each group of oocytes was stained with Brilliant cresyl blue (BCB) after 42h maturation. The matured oocytes were separated according to color of cytoplasm; stained group (BCB+) and unstained group (BCB-). The oocytes matured in the presence of FBS or/and pFF showed significantly higher staining rates (70.3 to 72.7 vs. 35.1%) (p<0.05). To verify the fact that the supplementation of FBS or/and pFF can increase the maturation rates, cdc2 kinase activity, the catalytic subunit of MPF, was determined. The cdc2 kinase activity of the oocytes matured in the medium supplemented with FBS or/and pFF was significantly higher than control group (6.7 to 9.3 vs. 3.8). In conclusion, the supplementation of FBS or/and pFF can support in vitro maturation rate of porcine oocytes through the increment of cdc2 kinase activity level in the cytoplasm.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells

  • Lee, Seung Eun;Park, Yong Seek
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other ${\alpha},{\beta}$-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an ${\alpha},{\beta}$-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin Vepropidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

p38 MAPK Participates in Muscle-Specific RING Finger 1-Mediated Atrophy in Cast-Immobilized Rat Gastrocnemius Muscle

  • Kim, Jung-Hwan;Won, Kyung-Jong;Lee, Hwan-Myung;Hwang, Byong-Yong;Bae, Young-Min;Choi, Whan-Soo;Song, Hyuk;Lim, Ki-Won;Lee, Chang-Kwon;Kim, Bo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.491-496
    • /
    • 2009
  • Skeletal muscle atrophy is a common phenomenon during the prolonged muscle disuse caused by cast immobilization, extended aging states, bed rest, space flight, or other factors. However, the cellular mechanisms of the atrophic process are poorly understood. In this study, we investigated the involvement of mitogen-activated protein kinase (MAPK) in the expression of muscle-specific RING finger 1 (MuRF1) during atrophy of the rat gastrocnemius muscle. Histological analysis revealed that cast immobilization induced the atrophy of the gastrocnemius muscle, with diminution of muscle weight and cross-sectional area after 14 days. Cast immobilization significantly elevated the expression of MuRF1 and the phosphorylation of p38 MAPK. The starvation of L6 rat skeletal myoblasts under serum-free conditions induced the phosphorylation of p38 MAPK and the characteristics typical of cast-immobilized gastrocnemius muscle. The expression of MuRF1 was also elevated in serum-starved L6 myoblasts, but was significantly attenuated by SB203580, an inhibitor of p38 MAPK. Changes in the sizes of L6 myoblasts in response to starvation were also reversed by their transfection with MuRF1 small interfering RNA or treatment with SB203580. From these results, we suggest that the expression of MuRF1 in cast-immobilized atrophy is regulated by p38 MAPK in rat gastrocnemius muscles.