• Title/Summary/Keyword: p38-MAPK

Search Result 597, Processing Time 0.028 seconds

Cyclic Mechanical Stretch Stimulates the Proliferation of C2C12 Myoblasts and Inhibits Their Differentiation via Prolonged Activation of p38 MAPK

  • Kook, Sung-Ho;Lee, Hyun-Jeong;Chung, Wan-Tae;Hwang, In-Ho;Lee, Seung-Ah;Kim, Beom-Soo;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.479-486
    • /
    • 2008
  • Mitogen-activated protein kinases (MAPKs) play an indispensable role in activation of the myogenic program, which is responsive to mechanical stimulation. Although there is accumulating evidence of mechanical force-mediated cellular responses, the role of MAPK in regulating the myogenic process in myoblasts exposed to cyclic stretch is unclear. Cyclic stretch induced the proliferation of C2C12 myoblasts and inhibited their differentiation into myotubes. In particular, it induced persistent phosphorylation of p38 kinase, and decreased the level of phosphorylation of extracellular-signal regulated kinase (ERK). Partial inhibition of p38 phosphorylation increased cellular levels of MyoD and p-ERK in stretched C2C12 cells, along with increased myotube formation. Treatment with $10{\mu}M$ PD98059 prevented myogenin expression in response to a low dose of SB203580 ($3{\mu}M$) in the stretched cells, suggesting that adequate ERK activation is also needed to allow the cells to differentiate into myotubes. These results suggest that cyclic stretch inhibits the myogenic differentiation of C2C12 cells by activating p38-mediated signaling and inhibiting ERK phosphorylation. We conclude that p38 kinase, not ERK, is the upstream signal transducer regulating cellular responses to mechanical stretch in skeletal muscle cells.

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Hesperetin Inhibits Vascular Formation by Suppressing of the PI3K/AKT, ERK, and p38 MAPK Signaling Pathways

  • Kim, Gi Dae
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.299-306
    • /
    • 2014
  • Hesperetin has been shown to possess a potential anti-angiogenic effect, including vascular formation by endothelial cells. However, the mechanisms underlying the potential anti-angiogenic activity of hesperetin are not fully understood. In the present study, we evaluated whether hesperetin has anti-angiogenic effects in human umbilical vascular endothelial cells (HUVECs). HUVECs were treated with 50 ng/mL vascular endothelial growth factor (VEGF) to induce proliferation as well as vascular formation, followed by treatment with several doses of hesperetin (25, 50, and $100{\mu}M$) for 24 h. Cell proliferation and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. In addition, cell signaling related to cell proliferation and vascular formation was analyzed by western blot. Furthermore, a mouse aorta ring assay was performed to confirm the effect of hesperetin on vascular formation. Hesperetin treatment did not cause differences in HUVECs proliferation. However, hesperetin significantly inhibited VEGF-induced cell migration and tube formation of HUVECs (P<0.05). Moreover, hesperetin suppressed the expression of ERK, p38 MAPK, and PI3K/AKT in the VEGF-induced HUVECs. In an ex vivo model, hesperetin also suppressed microvessel sprouting of mouse aortic rings. Taken together, the findings suggest that hesperetin inhibited vascular formation by endothelial cells via the inhibition of the PI3K/AKT, ERK and p38 MAPK signaling.

Anti-inflammatory Effects of Hemistepta lyrata Bunge in LPS-stimulated RAW 264.7 Cells through Regulation of MAPK Signaling Pathway (LPS로 유도된 RAW 264.7 대식세포의 염증반응에서 MAPK 신호경로 조절을 통한 지칭개 에탄올 추출물의 항염증 효과)

  • Kim, Chul Hwan;Lee, Young-Kyung;Jeong, Jin-Woo;Hwang, Buyng Su;Jeong, Yong Tae;Oh, Yong Taek;Cho, Pyo Yun;Kang, Chang-Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Hemistepta lyrata Bunge (HL) has been used as a folk remedy to treat cancer, inflammation, bleeding, hemorrhoids and fever, and leaves and young shoots have been used as famine food. Nevertheless, the biological activities and underlying mechanisms of the anti-inflammatory effects remain unclear. In this study, it was undertaken to explore the functions of the aerial part of HL as a suppressor of inflammation by using RAW 264.7 cells. As immune response parameters, the productions of as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines such tumor necrotic factor (TNF)-α and interleukin (IL)-6 were evaluated. Although the release of TNF-α remained unchanged in HL-treated RAW 264.7 cells, the productions of NO, PGE2 and IL-6 were significantly increased at concentrations with no cytotoxicity. Furthermore, HL significantly attenuated the mitogen-activated protein kinases (MAPK) pathway including decreasing the phosphorylation of the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases. Collectively, this study provides evidence that HL inhibits the production of major pro-inflammatory molecules in LPS-stimulated RAW 264.7 cells via suppression of ERK and P38 MAPK signaling pathways. These findings suggest that the beneficial therapeutic effects of HL may be attributed partly to its ability to modulate immune functions in macrophages.

Glutamine Inhibits TNF-α-induced Cytosolic Phospholipase A2 Activation via Upregulation of MAPK Phosphatase-1

  • Yoon, So Young;Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2021
  • Tumor necrosis factor alpha (TNF-α) is a principal regulator of inflammation and immunity. The proinflammatory properties of TNF-α can be attributed to its ability to activate the enzyme cytosolic phospholipase A2 (cPLA2), which generates potent inflammatory lipid mediators, eicosanoids. L-glutamine (Gln) plays physiologically important roles in various metabolic processes. We have reported that Gln has a potent anti-inflammatory activity via rapid upregulation of mitogen-activated protein kinases (MAPKs) phosphatase (MKP)-1, which preferentially dephosphorylates the key proinflammatory enzymes, p38 MAPK and cytosolic phospholipase A2 (cPLA2). In this study, we have investigated whether Gln could inhibit TNF-α-induced cPLA2 activation. Gln inhibited TNF-α-induced increases in cPLA2 phosphorylation in the lungs and blood levels of the cPLA2 metabolites, leukotrine B4 (LTB4) (lipoxygenase metabolite) and prostaglandin E2 (PGE2) (cyclooxygenase metabolite). TNF-α increased p38 and cPLA2 phosphorylation and blood levels of LTB4 and PGE2, which were blocked by the p38 inhibitor SB202190. Gln inhibited TNF-α-induced p38 and cPLA2 phosphorylation and production of the cPLA2 metabolites. Such inhibitory activity of Gln was no longer observed in MKP-1 small interfering RNA-pretreated animals. Our data indicate that Gln inhibited TNF-α-induced cPLA2 phosphorylation through MKP-1 induction/p38 inhibition, and suggest that the utility of Gln in inflammatory diseases in which TNF-α plays a major role in their pathogenesis.

Anti-inflammatory Effects of Korean red ginseng Extract in formalin-induced Orofacial Pain in Rats (포르말린으로 유도된 안면통증에 대한 홍삼추출물의 항염증 효과)

  • Jin, Byung-Moon;Lee, Min-Kyung;Lee, Jun-Seon;Hyun, Kyung-Yae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5708-5715
    • /
    • 2014
  • The effects of korean red ginseng (KRG) extracts on orifacial pain control in terms of the systemic inflammatory response and pharmacological effects as health supplements were investigated. The experimental group were divided into three groups, the control group (n=6), formalin (5%, $50{\mu}{\ell}$) injection group (n=6), and formalin (5%, $50{\mu}{\ell}$) injection added KRG administrated group (4.5 ml/kg, n=6). The KRG administrated group prior to the formalin injection significantly attenuated the behavioral response compared to that of the control group. Pain reduction was suppressed mainly from 15 min to 30 min. The KRG administrated rats showed significantly reduced p38 MAPK, iNOS and Nrf2 expression in the brain and medulla oblongata according to Western blot analysis. These findings suggest that KRE may have a useful effect on orificial pain control functions by preventing the p38 MAPK pathway.

Triglyceride Up-regulates Expression of ABCG1 in PMA-induced THP-1 Macrophages Through Activation of JNK and p38 MAPK Pathways

  • Lim, Jaewon;Kim, Sung Hoon;Kang, Yeo Wool;Jung, Byung Chul;Kim, Hyun-Kyung;Lee, Juyeon;Lee, Dongsup;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.237-243
    • /
    • 2014
  • Triglyceride (TG) can cause death of macrophages and formation of foam cells thereby increasing inflammation in atherosclerotic plaques. Accumulation of cholesterol in macrophages is another critical event that promotes development of inflammatory cardiovascular diseases. Several proteins are known to transport intracellular cholesterol outside of the cell and these proteins are thought to be protective against atherosclerosis pathogenesis. It is unknown whether TG can affect cholesterol efflux in macrophages. In the current study, we examined mRNA expression levels of genes that promote efflux of cholesterol (ABCA1, ABCG1 and SR-B1). We found that TG treated THP-1 macrophages exhibited an increase in ABCG1 expression in a dose- and time-dependent manner. In contrast, the expression of ABCA1 and SR-B1 remained unchanged. To identify cell signaling pathways that participate in up-regulation of ABCG1, THP-1 macrophages were treated with various cell signaling inhibitors. We found that inhibition of the JNK and p38 MAPK pathway completely abrogated up-regulation of ABCG1 whereas inhibition of MEK1 further enhanced ABCG1 expression in TG treated THP-1 macrophages. Also, TG induced phosphorylation of JNK and p38 MAPK in THP-1 macrophages. These results suggest that TG may potentially influence cholesterol efflux in macrophages.

Secretion of MCP-1, IL-8 and IL-6 Induced by House Dust Mite, Dermatophagoides pteronissinus in Human Eosinophilic EoL-1 Cells

  • Lee, Ji-Sook;Kim, In-Sik;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • The house dust mite (Dermatophagoides pteronissinus) is an important factor in triggering allergic diseases. The function of eosinophils, particularly in the production of cytokine or chemokine, is critical in understanding the pathogenesis of inflammatory diseases. In this study, we examined whether D. pteronissinus extract (DpE) induces the expression of monocyte chemotactic protein 1 (MCP-1)/CCL2, IL-8/CXCL8, and IL-6 that mediate in the infiltration and activation of immune cells and in its signaling mechanism in the human eosinophilic cell line, EoL-1. DpE increased the mRNA and protein expression of MCP-1, IL-8, and IL-6 in a time- and dose-dependent course in EoL-1 cells. In our experiments using signal-specific inhibitors, we found that the increased expression of MCP-1, IL-8, and IL-6 due to DpE is associated with Src family tyrosine kinase and protein kinase C $\delta$ (PKC $\delta$). In addition, the activation of extracellular signal-regulated kinase (ERK) is required for MCP-1 and IL-8 expression while p38 mitogen-activated protein kinase (MAPK) is involved in IL-6 expression. DpE induced the phosphorylation of ERK and p38 MAPK. PP2, an inhibitor of Src family tyrosine kinase, and rottlerin, an inhibitor of PKC $\delta$, blocked the activation of ERK and p38 MAPK. DpE induces the activation of ERK and p38 MAPK via Src family tyrosine kinase and PKC $\delta$ for MCP-1, IL-8, or IL-6 production. Increased cytokine release due to the house dust mite and the characterization of its signal transduction may be valuable in understanding the eosinophil-related pathogenic mechanism of inflammatory diseases.

Herba Portulacae induced Apoptosis in Human CervicalCarcinoma HeLa Cells (마치현(馬齒莧)이 자궁경부암세포(子宮頸部癌細胞)(HeLa Cell)에 미치는 영향(影響))

  • Eum, Joo-Oh;Kang, Bok-Hwan;Kim, Yang-Ho;Yoo, Sim-Keun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • To address the ability of Herba Portulacae(HP) to induce cell death, we investigated the effect of HP on cell viability. Twenty-four hours later, loss of viability occurred following HP exposure in a dose-dependent manner. The treatment of HP, a commonly used herb formulation in Korea, Japan and China, caused a decrease in cell viability. HP also resulted in apoptotic morphology a brightly blue-fluorescent condensed nuclei by Hoechst 33258-staining, and reduction of cell volume. Our results show that 2mg/ml HP induces mitochondria membrane potential collapse. Immunoblotting data also shows that the expression of Bcl-2, antiaoptotic protein, decrease by the addition of HP. This GFP-Bax overexpression system shows that an important pro-apoptotic Bcl-2-family protein, Bax is translocated to mitochondria by the addition of 2mg/ml HP. Inerestingly, MAPK inhibitor study shows that p38 MAPK inhibitor, SB203580 inhibits HP-induced cell death and caspase-3 activation in HP-treated HeLa cells. Furthermore, HP transiently but significantly induces p38 activation. But P38 MAPK inhibitor does not have any effect on the translocation of Bax. Considering these results, HP induces apoptosis via p38 MAPK activation. But the pathway does not involve the translocation of Bax.

  • PDF

p38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinase Regulate Nitric Oxide Production and Inflammatory Cytokine Expression in Raw Cells

  • Choi, Cheol-Hee;Kim, Sang-Hyun
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • Background: p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling are thought to have critical role in lipopolysaccharide (LPS)-induced immune response but the molecular mechanism underlying the induction of these signaling are not clear. Methods: Specific inhibitors for p38, SB203580, and for ERK, PD98059 were used. Cells were stimulated by LPS with or without specific MAPK inhibitors. Results: LPS activated inducible nitric oxide synthase (iNOS), subsequent NO productions, and pro-inflammatory cytokine gene expressions (TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and IL-12). Treatment of both SB203580 and PD98059 decreased LPS-induced NO productions. Concomitant decreases in the expression of iNOS mRNA and protein were detected. SB203580 and PD98059 decreased LPS-induced gene expression of IL-$1{\beta}$ and IL-6. SB203580 increased LPS-induced expression of TNF-${\alpha}$ and IL-12, and reactive oxygen species production, but PD98059 had no effect. Conclusion: These results indicate that both p38 and ERK pathways are involved in LPS-stimulated NO synthesis, and expression of IL-$1{\beta}$ and IL-6. p38 signaling pathways are involved in LPS-induced TNF-${\alpha}$ and IL-12, and reactive oxygen species plays an important role in these signaling in macrophage.