• Title/Summary/Keyword: p38 inhibitor

Search Result 347, Processing Time 0.027 seconds

Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii

  • Kim Ji-Young;Ahn Myoung-Hee;Song Hyun-Ouk;Choi Jong-Hak;Ryu Jae-Sook;Min Duk-Young;Cho Myung-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.197-207
    • /
    • 2006
  • This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and $MIP-1\alpha$, and enzyme, COX-2/prostaglandin $E_2(PGE_2)$ in infected cells via western blot, $[^3H]-uracil$ incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. $MIP-1\alpha$ mRNA was increased in macrophages at 18 hr PI. MCP-1 and $MIP-1\alpha$ were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. $PGE_2$ from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, $MIP-1\alpha$, COX-2 and $PGE_2$ were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.

The effects of Somok on apoptosis of human liver cancer HepG2 cell. (소목(蘇木)이 사람 간암 세포주인 HepG2의 세포사멸에 미치는 영향과 그 경로)

  • Kim, Pan-Jun;Yun, Hyun-Joung;Lee, Young-Tae;Seo, Kyo-Soo;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The purpose of this study was to investigate the anticancer effects of Caesalpiniae Lignum (Somok) on HepG2 cells, a human liver cancer cell line. To study the cytotoxic effect of Caesalpiniae Lignum methanol extract (CL-MeOH) on HepG2 cells, the cells were treated with various concentrations of CL-MeOH and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. CL-MeOH reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of CL-MeOH. The activation of caspase 3 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, was examined by western blot analysis. CL-MeOH decreased procaspase 3 level in a dose-dependent manner and induced the clevage of PARP at concentration> $200{\mu}/ml$. Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. CL-MeOH-induced MAPK activation was examined by Western blot for phosphorylated ERK, p38 and JNK. CL-MeOH significantly increased p38 phosphorylation and JNK phosphorylation in a dose-dependent manner. Inhibition of p38 function using the selective inhibitor SB20358O results in inhibition of apoptosis by CL-MeOH. These results suggest that CL-MeOH-induced apoptosis is MAP kinase-dependent apoptoric pathway. These results suggest that CL-MeOH is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Synergistic Induction of iNOS by IFN-${\gamma}$ and Glycoprotein Isolated from Dioscorea batatas

  • Pham, Thi Thu Huong;Lee, Min Young;Lee, Kun Yeong;Chang, In Youp;Lee, Seog Ki;Yoon, Sang Pil;Lee, Dong-Cheol;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.431-436
    • /
    • 2012
  • Dioscorea species continue to be used in traditional Chinese medicine, and represent a major source of steroid precursors for conventional medicine. In the previous study, We isolated glycoprotein (GDB) from Dioscorea batatas, characterized, and demonstrated immunostimulating activity in C57BL/6 mice. The aim of this study was to investigate the mechanism whereby GDB activates macrophages. Macrophages activation by GDB was investigated by analyzing the effects of GDB on nitric oxide (NO) production, iNOS expression, mitogen activated protein kinase (MAPK) phosphorylation, and transcription factor activation. In the presence of IFN-${\gamma}$, GDB strongly stimulated macrophages to express iNOS and produce NO. Furthermore, the activation of p38 was synergistically induced by GDB plus IFN-${\gamma}$, but SB203580 (a p38 inhibitor) inhibited GDB plus IFN-${\gamma}$-induced p38 activation. This study indicates that GDB is an important activator of macrophages. Furthermore, due to the critical role that macrophage activation plays in innate immune response, the activation effects of GDB on macrophages suggest that GDB may be a useful immunopotentiating agent.

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

[ $P2X_2$ ] Receptor Activation Potentiates PC12 Cell Differentiation Induced by ACAP in Acidic Environments

  • Lee, Myung-Hoon;Nam, Jin-Sik;Ryu, Hye-Myung;Yoo, Min;Lee, Moon-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.197-206
    • /
    • 2007
  • P2X receptors are membrane-bound ion channels that conduct $Na^+,\;K^+$, and $Ca^{2+}$ in response to ATP and its analogs. There are seven subunits identified so far ($P2X_1-P2X_7$). $P2X_2$ receptors are known to be expressed in a wide range of organs including brains and adrenal grands. PC12 cells are originated from adrenal grand and differentiated by nerve growth factor or pituitary adenylate cyclase activating poly peptide (PACAP). Previous studies indicate that $P2X_2$ receptor activation in PC12 cells couples to $Ca^{2+}-dependent$ release of catecholamine and ATP. It is known that acidic pH potentiates ATP currents at $P2X_2$ receptors. This leads to a hypothesis that $P2X_2$ receptors may play an important role in PC12 cell differentiation, one of the characteristics of which is neurite outgrowth, induced by the hormones under lower pH. In the present study, we isolated several clones which potentiate neurite outgrowth by PACAP in acidic pH (6.8), but not in alkaline pH (7.6). RT-PCR and electrophysiology data indicate that these clones express only functional $P2X_2$ receptors in the absence or presence of PACAP for 3 days. Potentiation of neurite outgrowth resulted from PACAP (100 nM) in acidic pH is inhibited by the two P2X receptor antagonists, suramin and PPADS ($100\;{\mu}M)$ each), and exogenous exprerssion of ATP-binding mutant $P2X_2$ receptor subunit ($P2X_2[K69A]$). However, acid sensing ion channels (ASICs) are not involved in PACAP-induced neurite outgrowth potentiation in lower pH since treatments of an inhibitor of ASICs, amyloride ($10\;{\mu}M$), did not give any effects to neurite extension. The vesicular proton pump ($H^+-ATPase$) inhibitor, bafilomycin (100 nM), reduced neurite extension indicating that ATP release resulted from $P2X_2$ receptor activation in PC12 cells is needed for neurite outgrowth. These were confirmed by activation of mitogen activated protein kinases, such as ERKs and p38. These results suggest roles of ATP and $P2X_2$ receptors in hormone-induced cell differentiation or neuronal synaptogenesis in local acidic environments.

  • PDF

Screening System for Chitin Synthase II Inhibitors from Natural Resources and its Inhibitor Prodigiosin

  • Hwang, Eui-Il;Kim, Young-Kook;Lee, Hyang-Bok;Kim, Hong-Gi;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.251-257
    • /
    • 2000
  • Chitin synthases are identified as key enzymes of chitin biosynthesis in most of the fungi. Among them, chitin synthase II has been reported to be and essential enzyme in chitin biosynthesis, and exists as a membrane-bound form. To search and screen new antifungal agents from natural resources to inhibit chitin synthase II, the assay conditions were established using the enzyme isolated from Saccharomyces cerevisiae ECY38-38A(pAS6) that overproduces only chitin synthase II. This enzyme was activated only by partial proteolysis with trypsin. Its actibity reached the maximum at $80{\;}\mu\textrm{g}/ml$ of trypsin and was strongly stimulated by 2.0 mM $Co^{2+}$, 1.0 nM UDP-[$^{14}C$]-GicNAc, and 32 mM free-GlcNAc. Under these assay conditions, the highest chitin synthase II activity was observed by incubation at $30^{\circ}C$ for 90 min. However, and extremely narrow range of organic solvents up to as much as 25% of DMSO and 25% of MeOH was useful for determining optimal assay conditions. After a search or potent inhibitors of chitin synthase II from natural resources, prodigiosin was isolated from Serratia marcescens and purified by solvent extration and silica gel column chromatographies. The structure of prodigiosin was determined by UV, IR, Mass spectral, and NMR spectral analyses. Its molecular weight and formula were found to be 323 and $C_{20}H_{25}N_{3}O$, respectively. Prodigiosin ingibited chitin synthase II by 50% at the concentration of $115{\;}\mu\textrm{g}/ml$.

  • PDF

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

Effect of the Calpain System on Volatile Flavor Compounds in the Beef Longissimus lumborum Muscle

  • Yang, Jieun;Dashdorj, Dashmaa;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.515-529
    • /
    • 2018
  • The present study was designed to investigate the effects of calpain system on the formation of volatile flavor compounds in Hanwoo beef. In the first experiment (exp.1), Longissimus lumborum (LL) muscle samples were injected with solutions containing 50 mM $CaCl_2$ or 50 mM $ZnCl_2$ and 154 mM NaCl respectively, and aged for 7 d at $4^{\circ}C$. In the second experiment (exp.2), the ground LL muscle was incubated with the aforementioned solutions containing cathepsin inhibitor. The injection with $CaCl_2$ solution greatly elevated the calpain activity and concomitantly, significantly decreased the Warner-Bratzler shear force (p<0.05). The pH, meat color and cooking loss did not differ (p>0.05) between the treatment groups. A total of 51 volatile compounds were identified using the solid phase microextraction with gas chromatography (SPME-GC). Results on volatile analyses from the both experiments showed that the injection with calcium ions led to significant increase (p<0.05) concentrations of pyrazines and sulfuric compounds. These results coincide with a higher rate of protein degradation due to the $CaCl_2$ injection as compared to the control group. Significantly (p<0.05) higher levels of lipid oxidation derived-aldehydes were found in the samples with $ZnCl_2$. The exp.1 showed that cathepsin inhibitors had no effect on the formation of volatile flavor components after 7 d of aging. These results imply that the proteolytic activity of the calpain system is associated with generation of volatile compounds of chiller-aged beef, while the role of cathepsins is likely very limited.

Berchemia floribunda-mediated Proteasomal Degradation of CyclinD1 via GKS3β-dependent Threonine-286 Phosphorylation in Human Colorectal Cancer Cells (인간 대장암 세포에 대한 먹넌출 추출물의 GSK3β 의존성 threonine-286 인산화를 통한 Cyclin D1 분해)

  • Kang, Yeongyeong;Eo, Hyun Ji;Kim, Da Som;Park, Youngki;Song, Jeong Ho;Park, Gwang Hun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.271-278
    • /
    • 2020
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the Berchemia floribunda (BF) which belongs to Rhamnaceae against human colorectal cancer cells. The treatment of BF decreased the cell proliferation in HCT116 cell and suppressed cellular accumulation of Cyclin D1 protein. Inhibition of proteasomal activity by MG132 attenuated BF-mediated Cyclin D1 downregulation and Cyclin D1 was decreased in the cell treated with BF. These findings indicates that BF-mediated Cyclin D1 downregulation may be result from Cyclin D1 proteasomal degradation. Additionally, BF-mediated Cyclin D1 degradation was blocked in the presence of LiCl, a GSK3β inhibitor, but not PD98059, SP600125, SB203580, Bay11-7082, LY294002 an ERK1/2 inhibitor, JNK inhibitor, p38 inhibitor, IκK inhibitor and PI3K inhibitor. Furthermore, BF phosphorylated Cyclin D1 at threonine-286 (Thr286), and LiCl-induced GSK3β inhibition reduced the BF mediated phosphorylation of Cyclin D1 at Thr286. These results suggested that BF may downregulate Cyclin D1 expression as a potential anti-cancer target through GSK3β dependent Cyclin D1 degradation. Therefore, this study provides that the extract of BF has anticancer activity against human colorectal cancer cells.

Endometrium from Women with Endometriosis Expresses Decreased Levels of Plasminogen Activator Inhibitor-1 and Tissue Inhibitor of Metalloproteinase-3 Compared to Normal Endometrium (자궁내막증 환자와 정상 여성의 자궁내막에서 TIMP-3와 PAI-1 mRNA 발현 차이에 관한 연구)

  • 정혜원
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 1999
  • The pathogenesis of endometriosis is unknown, but retrograde menstruation is widely accepted as an etiology. Refluxed endometrium from endometriosis patients is more prone to implant and invade peritoneum possibly through the action of extracellular proteolysis. This proteolytic action may involve plasminogen activators and the collagenase system. Plasminogen activators (PAs) and matrix metalloproteinases (MMPs) play a critical role in the breakdown of extracellular matrix components and basement membrane in the processes of implantation and tumor invasion. PAs are inhibited by plasminogen activator inhibitor (PAI) and MMPs activity is inhibited by tissue inhibitor of metalloproteinase (TIMP). To test the hypothesis that lower expression of PAI-1 and TIMP-3 in endometrium from women with endometriosis, we investigated their PAI-1 and TIMP-3 expression by quantitative competitive RT PCR in endometrium from women with and without endometriosis. Endometrial tissues were obtained from 14 patients with severe endometriosis and 14 patients without endometriosis. Total RNA was extracted and reverse transcribed into cDNA, and quantitative competitive PCR (QC PCR) was performed to evaluate PAI-1 and TIMP-3 mRNA expression. Endometrium from patients with endometriosis showed decreased expression of PAI-1 and TIMP-3 mRNA compared to endometrium from control in luteal phase (p<0.05). Our results suggest that endometrium from women with endometriosis expresses lower levels of PAI-1 and TIMP-3 than endometrium from normal women. Endometrium from endometriosis patients may be more invasive and prone to peritoneal implantation than control because of higher PA and MMP enzymatic activity. Thus, increased proteolytic activity may be one of the reasons for the invasive properties of the endometrium resulting in the development of endometriosis.

  • PDF