• Title/Summary/Keyword: p38 MAP kinase

Search Result 126, Processing Time 0.049 seconds

Neuroprotective Effects of Korean Kiwifruit against t-BHP-induced Cell Damage in PC12 Cells (국내산 참다래 추출물의 신경독성 방어효과)

  • Kim, Jeong-Hee;Yang, Hee-Kyoung;Hong, Hyun-Ju;Kang, Won-Young;Kim, Dong-Geon;Kim, Seong-Cheol;Song, Kwan-Jeong;King, Dale;Han, Chang-Hoon;Lee, Young-Jae
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • Oxidative stress induced by reactive oxygen intermediates has been implicated in a variety of human diseases including neurodegenerative disorders, cancer, cardiovascular and respiratory diseases, and mode of action of environmental toxicants. Tert-butylhydroperoxide (t-BHP) is an organic lipid hydroperoxide analogue, which is commonly used as a pro-oxidant for evaluating mechanisms involving oxidative stress in cells and tissues. In this study, the underlying mechanisms involved in the protective effects of Hwabuk 94 kiwifruit (Actinidia deliciosa cv. 'Hwabuk 94'), which is cultivated in Jeju, on the t-BHP-induced cytotoxicity in PC12 cell. The pretreatment of rat pheochromocytoma cell line PC12 with Hwabuk 94 extract ($1-100\;{\mu}g/ml$) resulted in a significant recovery from t-BHP-induced cell death and increased Bcl-2 and procaspase-3 expression, whereas the expression of Bax and cleaved PARP were decreased in a dose-dependent manner compared to the control. Furthermore, Hwabuk 94 inhibited the t-BHP-induced p38 MAP kinase and extracellular signal-regulated kinase 1/2, but not c-Jun N-terminal kinase activations. Finally, these findings suggest that Hwabuk 94 kiwifruit might attenuate t-BHP-induced PC12 cell cytotoxicity, at least in part, through the inhibition of signaling pathways mediated by the ERK1/2 and p38 MAP kinase.

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

Lysophosphatidic acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Sohn, Uy-Dong;Park, Kyoung-Chan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.96.1-96.1
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we were surprised to find that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. (omitted)

  • PDF

Effect of Kainic Acid on the Phosphorylation of Mitogen Activated Protein Kinases in Rat Hippocampus

  • Won, Je-Seong;Lee, Jin-Koo;Choi, Seong-Soo;Song, Dong-Keun;Huh, Sung-Oh;Kim, Yung-Hi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.451-456
    • /
    • 2001
  • In rat hippocampus, kainic acid (KA; 10 mg/kg; i.p.) increased the phosphorylated forms of ERK1/2 (p-ERK1/2) and Jun kinase1 (p-JNK1), but not p-JNK2 and p38 (p-p38). The preadministration with cycloheximide (CHX; 5 mg/kg; i.p.) inhibited KA-induced increase of p-JNK1, but not p-ERK1/2. Surprisingly, the phosphorylated upstream MAP kinase kinases (p-MKKs) were not correlated with their downstream MAP kinases. The basal p-MKK1/2 levels were completely abolished by KA, which were reversed by CHX. In addition, p-MKK4 and p-MKK3/6 levels were enhanced by CHX alone, but were attenuated by KA. Thus, our results showed that KA increased the p-ERK and p-JNK levels in rat hippocampus, which were not parallel with their classical upstreamal kinases.

  • PDF

Cyclooxygenase-2 as a Molecular Target for Cancer Chemopreventive Agents

  • Surh, Young-Joon
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.89-96
    • /
    • 2001
  • Recently, considerable attention has been focused on the role of cyclooxygenase-2 (COX-2) in the carcinogenesis as well as in inflammation. Improperly overexpressed COX-2 has been observed in many types of human cancers and transformed cells in culture. Thus, it is conceivable that targeted inhibition of abnormally or improperly up-regulated COX-2 provides one of the most effective and promising strategies for cancer prevention. A ubiquitous eukaryotic transcription factor, NF-kB is considered to be involved in regulation of COX-2 expression. Furthermore, extracellular-regulated protein kinase and p38 mitogen-activated protein (MAP) kinase appear to be key elements of the intracellular signaling cascades involved in NF-kB activation in response to a wide array of external stimuli. Certain chemopreventive phytochemicals suppress activation of NF-kB by blocking one or more of the MAP kinases, which may contribute to their inhibitory effects on COX-2 induction. One of the plausible mechanisms by which chemopreventive phytochemicals inhibit NF-kB activation involves suppression of degradation of the inhibitory unit I kB, which hampers subsequent translocation of p65, the functionally active subunit of NF-kB.

  • PDF

Shikonin Modulates Cell Proliferation by Inducing Apoptosis in LLC Cells via MAPK Regulation and Caspase Activation

  • Lee, Soo-Jin;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.501-507
    • /
    • 2005
  • Shikonin is a chemically characterized component of traditional herbal medicine, the root of Lithospermum erythrorhizon and has been shown to possess antitumor activities. Here we investigated anticancer potential of shikonin and its possible mechanism of action in LLC cells. Shikonin inhibited the proliferation of LLC cells in a concentration-dependent manner. It was also demonstrated that shikonin induced apoptosis in LLC cells by Annexin V staining and TUNEL staining analysis. Shikonin treatment was caused that decrease of Bcl-2, activation of caspases and cleavage of PARP. And shikonin also induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Interestingly, the cell proliferation inhibition induced by shikonin was recovered by specific inhibitors of JNK and p38 but the inhibitor of MEK, the upstream kinase of ERK, did not recover. Additionally, shikonin administration at doses of 5 mg/kg in C57BL/6 mice strongly inhibited the primary tumor growth of LLC. Taken together, these results suggest that shikonin may suppress LLC cell proliferation by inducing an apoptotic process via activation of caspases and MAPKs

Anti-Inflammatory Effects and Cytoprotective Effects of Smilacis Chinae Radix (토복령의 항염증 및 세포보호 효과에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Smilacis Chinae Radix has been used as an anti-inflammatory agent. This study was performed to anti-inflammatory and MAP kinase signaling pathway in vitro. Experimental studies were obtained by measuring the Cytotoxicity, production of NO, PGE2, TNF-$\alpha$ and protein level of catalase, SOD, MAP kinase, The results were summarized as follows: Smilacis Chinae Radix was not cytotoxic effects against Raw264.7 and HEK293 cells. Concentration of $100{\mu}g/m{\ell}$ Smilacis Chinae Radix inhibited the production of NO in the Raw264.7 cell stimulated with LPS. All concentrations of Smilacis Chinae Radix not significantly inhibited the production of PGE2 in the Raw264.7 cell stimulated with LPS. All concentrations of Smilacis Chinae Radix did not inhibit the production of TNF-$\alpha$ in the Raw264.7 cell stimulated with LPS. Smilacis Chinae Radix has not effect of blocking NF-${\kappa}B$ into nucleus in LPS-induced macrophage Raw264.7 cell. Smilacis Chinae Radix has the effect of Cytoprotection through activation of ERK and inhibition of p38 and JNK. Accordingly the results show Smilacis Chinae Radix could induce anti-inflammation and Cytoprotection effects against In vitro, but it needs more research on the precise mechanism of such effects.

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.