• 제목/요약/키워드: p21CIP1

검색결과 122건 처리시간 0.022초

Piceatannol에 의한 AGS 인체 위암세포의 G1 Arrest 및 Prostaglandin E2 생성의 억제 (Piceatannol-Induced G1 Arrest of the Cell Cycle is Associated with Inhibition of Prostaglandin E2 Production in Human Gastric Cancer AGS Cells)

  • 최영현
    • 한국식품영양과학회지
    • /
    • 제41권7호
    • /
    • pp.907-913
    • /
    • 2012
  • 포도, 대황, 사탕수수 등을 포함한 다양한 식물에서 발견되는 hydroxystilbene의 일종인 piceatannol은 암세포의 증식을 억제하고 apoptosis를 유발하는 것으로 알려져 있다. 본 연구에서는 AGS 인체위암세포를 대상으로 piceatannol에 의한 암세포 증식억제 과정에서 나타나는 또 다른 현상들을 조사하기 위하여 실시되었다. Piceatannol이 처리된 AGS 위암세포는 piceatannol의 처리 농도의 증가에 따라 생존율이 감소되었으며, 이는 세포주기 G1 arrest 유발과 연관이 있음을 MTT assay와 flow cytometry 분석을 통하여 확인하였다. Piceatannol에 의한 AGS 세포의 G1 arrest는 Cdks 및 cyclins의 발현 변화 및 Cdk 저해제인 p21의 발현을 전사 및 번역 수준에서 증가시켰으며, pRB 단백질의 인산화 감소 및 E2F1의 발현 억제와 연관성이 있었다. 아울러 piceatannol은 COX-2의 mRNA 및 단백질의 발현을 억제하였으나 COX-1의 발현에는 영향을 미치지 않았으며, piceatannol에 의한 COX-2의 발현억제는 PGE2의 생성 저하와 관련이 있었다. 본 연구의 결과는 piceatannol에 의한 세포주기 G1 arrest 유발이 COX-2의 선택적 발현 차단과 연관이 있음을 보여 주는 것이다.

Identification of p54nrb and the 14-3-3 Protein HS1 as TNF-α-Inducible Genes Related to Cell Cycle Control and Apoptosis in Human Arterial Endothelial Cells

  • Stier, Sebastian;Totzke, Gudrun;Grunewald, Elisabeth;Neuhaus, Thomas;Fronhoffs, Stefan;Schoneborn, Silke;Vetter, Hans;Ko, Yon
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.447-456
    • /
    • 2005
  • TNF-$\alpha$ plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-$\alpha$ induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-$\alpha$ on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-$\alpha$ cytotoxicity, presumably by NF-${\kappa}B$ mediated induction of protective genes. However, the cytoprotective genes involved in NF-${\kappa}B$ dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-$\alpha$ inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-$\alpha$-induced expression of the RNA binding protein $p54^{nrb}$ and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-$\alpha$ mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, $p21^{cip1}$ and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-$\alpha$ induced gene expression patterns mediating the prosurvival effect of TNF-$\alpha$ in endothelial cells.

산두근 추출물이 인체폐암세포의 COX-2 발현 및 PGE2 생성에 미치는 영향 (Antiproliferative Effect of RST Associated with the Inhibition of Cyclooxygenase-2 Expression and Prostaglandin E2 Release in Human Lung Carcinoma Cells)

  • 김강태;엄현섭;지규용
    • 동의생리병리학회지
    • /
    • 제21권4호
    • /
    • pp.907-915
    • /
    • 2007
  • In this study the effect of water extract of Sophora tonkinensis Gapnep (RST) was investigated on the growth of human lung carcinoma A549 cells. Exposure of A549 cells to RST resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay. The antiproliferative effect by RST treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. RST treatment did not induce the cell cycle arrest and the levels of tumor suppressor p53 as well as cyclin-dependent kinase inhibitor p21(WAF1/CIP1). It was found that RST treatment decreased the levels of cyclooxygenase (COX) -2 mRNA and protein expression without significant changes in the expression of COX-1 and inducible nitric oxide synthase (iNOS), which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. RST treatment also slightly inhibited the levels of human telomerase reverse transcriptase (hTERT) mRNA and protein expression, and the activity of telomerase. Taken together, these findings suggested that RST-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the inhibition of COX-2 expression and PGE2 production. These results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of RST.

동충하초 열수 추출물에 의한 인체 간암세포 성장억제 및 apoptosis 유발에 관한 연구 (Induction of Apaopotis by Water Extract of Cordyceps militaris (WECM) in Human Hepatocellular Carcinoma HepG2 Cells.)

  • 김경미;박철;최영현;이원호
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.804-813
    • /
    • 2008
  • 본 연구에서는 전통 민간의학에서 많이 사용되는 동충하초(C. militaris)의 항암 작용에 관한 근거 자료의 제시를 위하여 동충하초 열수 추출물(WECM)의 항암 기전 해석을 시도하였다. 이를 위하여 HepG2 인체 간암세포를 사용하였으며, WECM의 처리에 의하여 HepG2 세포의 증식은 처리 농도의 증가에 따라 매우 억제되었다. WECM 처리에 의한 HepG2 세포의 증식 억제는 암세포의 심한 형태적 변형을 수반하였고, 이는 apoptosis 유도와 연관성이 있음을 DAPI 염색을 통한 apoptotic body 출현의 증가 및 flow cytometry 분석에 의한 sub-G1 기에 속하는 세포 빈도의 증가로 확인하였다. WECM 처리에 의한 HepG2 세포의 증식 억제는 또한 종양 억제 유전자 p53 및 CDKI p21의 발현 증가와도 연관성이 있음을 알 수 있었다. WECM 처리에 의한 apopotosis 유도에서 pro-apoptotic 인자인 Bax의 발현이 전사 및 번역 수준에서 매우 증가하였으며, caspase-3의 활성이 매우 높게 증가되었다. 특히 caspase-3 특이적 억제제인 z-DEVD-fmk로 caspase-3의 활성을 인위적으로 차단시켰을 경우, WECM에 의한 HepG2 세포의 apoptosis 유발에 caspase-3이 중심적인 역할을 하고 있음을 알 수 있었다. 본 연구 결과는 WECM의 생화학적 항암기전 해석을 이해하고 향후 수행될 추가 실험을 위한 기초 자료로서 그 가치가 매우 높은 것으로 생각된다.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression

  • Seo, Eun-Jeong;Kim, Se-Woon;Jho, Eek-hoon
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.217-222
    • /
    • 2009
  • Controlled gene expression in specific cells is a valuable tool for gene therapy. We attempted to determine whether the lentivirus-mediated Tet-On inducible system could be applied to cancer gene therapy. In order to select the genes that induce cancer cell death, we compared the ability of the known pro-apoptotreic genes, Bax and tBid, and a cell cycle inhibitor, p21cip1/waf1, and determined that Bax was the most effective. For the cancer cell-specific expression of $rtTA2^S$-M2, we tested the matrix metalloproteinase-2 (MMP-2) promoter and determined that it is highly expressed in cancer cell lines, including SNU475 cells. The co-transduction of two lentiviruses that contain sequences for TRE-Bax and $rtTA2^S$-M2, the expression of which is controlled by the MMP-2 promoter, resulted in the specific cell death of SNU475, whereas other cells with low MMP-2 expression did not evidence significant cell death. Our data indicate that the lentivirus-mediated Tet-On system using the cancer-specific promoter is applicable for cancer gene therapy.

인체백혈병세포의 증식에 미치는 불등가사리 메탄올 추출물의 영향 (Induction of Apoptosis by Methanol Extract of Gloiopeltis furcata in Human Leukemia Cell Line U937)

  • 최우영;;김기영;이원호;배송자;최영현
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.76-83
    • /
    • 2006
  • 본 연구에서는 다양한 인체암세포의 증식에 미치는 등불가사리 메탄올 추출물(MEGF)의 영향을 조사하였다. MEGF는 처리 농도의존적으로 암세포의 형태적변이 및 증식억제가 효과를 보여주었으며, 특히 백혈병세포에서 가장 높은 감수성을 보여주었다. 따라서 백혈병세포의 증식억제 효과가 apoptosis 유발과 연관성이 있는지를 flow cytometry 분석 및 DAPI staining 법으로 조사한 결과, MEGF 처리에 의한 백혈병세포의 증식억제는 세포주기 교란과 무관한 apoptosis 유발에 의한 것임을 sub-G1기 세포의 빈도 증가 및 apoptotic body 형성의 증가 등으로 확인하였다. 또한 MEGF 처리에 의한 백혈병세포의 증식억제 및 apoptosis 유발은 p53 비의존적인 p21의 발현 증가 및 Fas/FasL system의 발현 증가와 연관성이 있음을 알 수 있었다. 이상의 결과들은 인체 암세포, 특히 백혈병세포에서 MEGF의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 MEGF 내 함유된 생리활성 물질의 분리 및 항암적용 연구를 위한 중요한 기초 자료로 활용될 것이다.

  • PDF

Effect of Nardostachyos Rhizoma on Apoptosis, Differentiation and Proliferation in HL-60 cells

  • Ju Sung-Min;Lee Jun;Choi Ho-Seung;Yoon Sang-Hak;Kim Sung-Hoon;Jeon Byung-Hun
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.163-170
    • /
    • 2006
  • Nardostachyos Rhizoma (N. Rhizoma) belonging to the family Valerianaceae has been anti-arrhythmic effect, and sedation to the central nerve and a smooth muscle. We reported that the water extract of N. Rhizoma induced apoptotic cell death and differentiation in human promyelocytic leukemia (HL-60) cells. Cytotoxicity of N. Rhizoma was detected only in HL-60 cells (IC50 is about 200 ${\mu}g/ml$). The cytotoxic activity of N. Rhizoma in HL-60 cells was increased in a dose-dependent manner. We used several measures of apoptosis to determine whether these processes were involved in N. Rhizoma-induced apoptotic cell death. The high-dose (200 ${\mu}g/ml$) treatment of N. Rhizoma to HL-60 cells showed cell shrinkage, cell membrane blobbing, apoptotic bodies, and the fragmentation of DNA, suggesting that these cells underwent apoptosis. Treatment of HL-60 cells with N. Rhizoma time-dependently induced activation of caspase-3, caspase-8, and caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, we investigated the effect of N. Rhizoma on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells was determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide assay, respectively. N. Rhizoma induced the differentiation of HL-60 at the low-dose (100 ${\mu}g/ml$) treatment, as shown by increased expression of differentiation surface antigen CD11b, but not CDl4 and increased reducing activity of NBT. When HL-60 cells were treated with N. Rhizoma at concentration of $50{\mu}g/ml\;and\;100{\mu}g/ml$, NBT-reducing activities induced approximately 1.5-fold and 20.0-fold as compared with the control. In contrast, HL-60 cells treated with the N. Rhizoma-ATRA combination showed markedly elevated levels of 26.3-fold at $50{\mu}g/ml$ N. Rhizoma-0.1 ${\mu}M$ ATRA combination and 27.5-fold at 50 ${\mu}g/ml$ N. Rhizoma-0.2 ${\mu}M$ ATRA combination than when treated with N. Rhizoma alone or ATRA alone. It may be that N. Rhizoma plays important roles in synergy with ATRA during differentiation of HL-60 cells. DNA flow-cytometry indicated that N. Rhizoma markedly induced a G1 phase arrest of HL-60 cells. N. Rhizoma-treated HL-60 cells increased the cell population in G1 phase from 32.71% to 42.26%, whereas cell population in G2/M and S phases decreased from 23.61% to 10.33% and from 37.78% to 33.98%, respectively. We examined the change in the $p21^{WAF1/Cip1}\;and\;p27^{Kip1}$ proteins, which are the CKIs related with the G1 phase arrest. The expression of the CDK inhibitor $p27^{Kip1},\;but\;not\;p21^{WAF1/Cip1}$ were markedly increased by N. Rhizoma. Taken together, these results demonstrated that N. Rhizoma induces apoptotic cell death through activation of caspase-3, and potently inhibits the proliferation of HL-60 cells via the G1 phase cell cycle arrest in association with $p27^{Kip1}$ and granulocytic differentiation induction .

Trichostatin A Induces Apoptotic Cell Death in Human Breast Carcinoma Cells through Activation of Caspase-3

  • Kim, Nsm-Deuk;Kim, Seaho;Choi, Yung-Hyun;Im, Eun-Ok;Lee, Ji-Hyeon;Kim, Dong-Kyoo
    • Journal of Life Science
    • /
    • 제10권2호
    • /
    • pp.39-44
    • /
    • 2000
  • Trichostatin A (TSA) is a Streptomyces product, which inhibits the enzyme activity of histone deacetylase. It is also known as an inducer of apoptosis in several human cancer cell lines. In this study, we investigated the mechanism of apoptosis induced by TSA in MDA-MB-231 human breast carcinoma cells. The cytotoxicity of TSA on MDA-MB-231 cells was assessed by MTT assay. The cell viability was decreased dose-dependently and the IC\ulcorner value was about 100 ng/ml after 48 h treatment with TSA. Morphological change and DNA ladder formation, the biochemical hallmarks of apoptotic cell death, were observed after treatment of TSA in a concentration-dependent manner, which was accompanied with cleavage of poly(ADP-ribose) polymerase and $\beta$-catenin, and activation of caspase-3. TSA treatment up-regulated the expression of a cyclin-dependent kinase inhibitor p21 (Wafl/Cip1) protein, a key regulatory protein of the cell cycle. However, there is no detectable change of both Bcl-2 and Bax expressions. These results demonstrated that TSA might inhibit cell growth through apoptosis in human breast carcinoma MDA-MB-231 cells.

  • PDF

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.