• Title/Summary/Keyword: p-nitrophenol

Search Result 92, Processing Time 0.028 seconds

Stabilization of Bioluminescence of Immobilized Photobacterium phosphoreum and Monitoring of Environmental Pollutants

  • Britz, Margaret L.;Nina Simonov;Chun, Uck-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.242-249
    • /
    • 1997
  • Stability of bioluminescence was investigated with Photobacterium phosphoreum immobilized on the strontium alginate in order to develope continuous real time monitoring of pollutants. The stability of bioluminescence emission was improved by prolonged aging time. The aging time of ${\geq}40$ min and the cell concentration of ${\leq}0.6\;of\;OD_660$ were selected for the immobilization of P. phosphoreum to give linearity between cell concentrations and bioluminescence intensity. In sensitivity tests using phenol, it was found that this compound quenched bioluminescence proportional to the concentration without lowering of cell growth. The lower value for maximum quenching ($q_s$) and higher dissociation constant ($K_s$) were observed with strontium-alginate immobilized cells compared to free cells. The response of bioluminescence to toxicants was evaluated with the immobilized luminescent bacteria. The sensitivity of the immobilized cells was found to be good in response to toxicants, 4-nitrophenol, salicylate and cadmium, when evaluated with a specific rate of bioluminescence quenching.

  • PDF

Studies on the Antifungal Action of Leather in Korea (Part. 2) (한국에서의 피혁방미에 관한 연구 2)

  • 김종협;장건형;최춘언
    • Korean Journal of Microbiology
    • /
    • v.3 no.1
    • /
    • pp.18-23
    • /
    • 1965
  • It seems like that the characteristics and drug-resistances of fungi are respectively different in various circumstances. Scores of chemicals were applicated to the leather-fungi in this study. M-dinitrobenzene, 2, 4-dinitrochlorobenzene and phenyl mercuric acetate inhibited the growth of Aspergilli which were isolated from Korean-leather. The minimum fungicidal limits of p-nitrophenol, 8-hydroxyquinoline and sodium-pentachlorophenolate against the Korean-originated strains are different from that of other country. In the mass-screening of fungicides, artificial "Leather-extracts media" have been designed and used, and the media contributed to screening-tests. Fat and oils which are the materials of fat-liquoring in leather manufacture affects the drugresistance of the leather-fungi. It is found that the accelerating-method on malt-agar plate is effective to determinate the fungicidal action of chemicals in short time.hort time.

  • PDF

The Role of Residues 103, 104, and 278 in the Activity of SMG1 Lipase from Malassezia globosa: A Site-Directed Mutagenesis Study

  • Lan, Dongming;Wang, Qian;Popowicz, Grzegorz Maria;Yang, Bo;Tang, Qingyun;Wang, Yonghua
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1827-1834
    • /
    • 2015
  • The SMG1 lipase from Malassezia globosa is a newly found mono- and diacylglycerol (DAG) lipase that has a unique lid in the loop conformation that differs from the common alpha-helix lid. In the present study, we characterized the contribution of three residues, L103 and F104 in the lid and F278 in the rim of the binding site groove, on the function of SMG1 lipase. Site-directed mutagenesis was conducted at these sites, and each of the mutants was expressed in the yeast Pichia pastoris, purified, and characterized for their activity toward DAG and p-nitrophenol (pNP) ester. Compared with wild-type SMG1, F278A retained approximately 78% of its activity toward DAG, but only 11% activity toward pNP octanoate (pNP-C8). L103G increased its activity on pNP-C8 by approximately 2-fold, whereas F104G showed an approximate 40% decrease in pNP-C8 activity, and they both showed decreased activity on the DAG emulsion. The deletion of 103-104 retained approximately 30% of its activity toward the DAG emulsion, with an almost complete loss of pNP-C8 activity. The deletion of 103-104 showed a weaker penetration ability to a soybean phosphocholine monolayer than wild-type SMG1. Based on the modulation of the specificity and activity observed, a pNP-C8 binding model for the ester (pNP-C8, N102, and F278 form a flexible bridge) and a specific lipid-anchoring mechanism for DAG (L103 and F104 serve as "anchors" to the lipid interface) were proposed.

Purification and Characterization of Extracellular Chitinase Produced by Marine Bacterium, Bacillus sp. LJ-25

  • Lee, Jung-Suck;Joo, Dong-Sik;Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.307-311
    • /
    • 2000
  • Abstract Extracellular chitinase was purified from the culture liquid of the marine bacterium, Bacillus sp. LJ-25 , and its enzymatic properties were examined. The purified chitinase exhibited a single band on SDS-PAGE and the molecular weight was estimated to be approximately 50 kDa. The optimum pH and temperature for the enzymatic activity were 7.0 and $35^{\circ}C$, respectively. The activity of the chitinase was strongly inhibited by $Zn^{2+}$ and slightly inhibited by $Ba^{2+},{\;}Co^{2+},{\;}Mn^{2+},{\;}and{\;}Cu^{2+}$. The purified chitinase did not hydrolyze $p-nitrophenolN-acetyl-{\bata}-D-glucosaminide{\;}(GlcNAc)_2$ and Micrococcus lysodeikticus cells, which are known to be the substrates for exo-type chitinase. Among the hydrolyzates of colloidal chitin, $(GlcNAc)_2$ was in the highest concentration with small amounts of GlcNAc and $(GlcNAc)_3$..

  • PDF

Cloning and Expression of a Parathion Hydrolase Gene from a Soil Bacterium, Burkholderia sp. JBA3

  • Kim, Tae-Sung;Ahn, Jae-Hyung;Choi, Min-Kyeong;Weon, Hang-Yeon;Kim, Mi-Sun;Seong, Chi-Nam;Song, Hong-Gyu;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1890-1893
    • /
    • 2007
  • A bacterium, Burkholderia sp. JBA3, which can mineralize the pesticide parathion, was isolated from an agricultural soil. The strain JBA3 hydrolyzed parathion to p-nitrophenol, which was further utilized as the carbon and energy sources. The parathion hydrolase was encoded by a gene on a plasmid that strain JBA3 harbored, and it was cloned into pUC19 as a 3.7-kbp Sau3AI fragment. The ORF2 (ophB) in the cloned fragment encoded the parathion hydrolase composed of 526 amino acids, which was expressed in E. coli DH10B. The ophB gene showed no significant sequence similarity to most of other reported parathion hydrolase genes.

Adsorption of Phenols onto Chemically-Activated Carbons Developed from Wild Cherry Stones

  • Alaya, M.N.;Youssef, A.M.;Karman, M.;Abd El-Aal, H.E.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.188-195
    • /
    • 2006
  • Phosphoric acid-activated carbon WP's and zinc chloride-activated carbons WZ's were developed from wild cherry stones. The textural properties of the activated carbons were determined from nitrogen adsorption data at 77 K and the chemistry of the carbon surface, i.e. the surface carbon-oxygen groups (type and amount) was determined from the base and acid neutralization capacities (Boehm method). The adsorption of phenol, p-nitrophenol, p-chlorophenol, dinitrophenol and dichlorophenol was followed at 298 K. The activated carbons obtained were characterized by high surface area and large pore volumes as well as by high surface concentration of C-O groups. The investigated carbons exhibited high adsorption capacities towards phenols with these capacities increased with the increase of molecular weight and the decrease of the solubility of phenol in water. However, no general relationship could be observed between the adsorption capacities of carbons and any of their textural parameters or their surface chemistry. This may be attributed to the many factors controlling phenol adsorption and the different types and mechanisms of adsorption involved.

  • PDF

Picomolar Scale Determination of Carbohydrates Covalently Immobilized on Activated Beads Using Hydroxyl Functionality

  • Yu, Jae-Hoon;Chun, Sung-Min;Park, Ho-Koon;Park, Yong-Keun;Jeong, Sun-Joo
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.98-102
    • /
    • 1999
  • Since carbohydrates are major mediators in cell-to-cell adhesion and communication, the development of specific and strong binders against them could generate promising therapeutics. As the first step towards that goal, sugar molecules have to be immobilized to be used as an affinity matrix. The amino functionality in sugar is the most active nucleophile for the immobilization, if the amino group is available. An alternative and general method is to use the hydroxyl group as a direct nucleophile, but the quantitation of immobilized hydroxyl groups is not easily done. To overcome this limitation, we have developed a method to immobilize various isomers of monosaccharides with p-nitrophenyl groups to the beads by using their hydroxyl groups. It was found that the amount of immobilized sugar was independent of the structure of the sugar, but was dependent on the number of hydroxyl groups. We also developed a sensitive method to quantify the amount of immobilized sugar at the picomolar scale by utilizing commercially available glycosidases to release a sensitive reporter molecule, p-nitrophenol, and detect it by HPLC. This new technique would allow a facile quantitation method for immobilized sugar molecules, which could be used as the affinity matrix to develop strong binders against biologically important sugars.

  • PDF

Effects of Oral Rutaecarpine on the Pharmacokinetics of Intravenous Chlorzoxazone in Rats

  • Bista, Sudeep R.;Lee, Sang-Kyu;Thapa, Dinesh;Kang, Mi-Jeong;Seo, Young-Min;Kim, Ju-Hyun;Kim, Dong-Hyeon;Jahng, Yurng-Dong;Kim, Jung-Ae;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.195-199
    • /
    • 2008
  • It has been reported that hepatic microsomal cytochrome P450(CYP) 2E1 is responsible for the metabolism of chlorzoxazone(CZX) to 6-hydroxychlorzoxazone. The present study was undertaken to assess the possible interaction of rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, with CZX. Male Spraque-Dawley rats were administered with 80 mg/kg/day of oral rutaecarpine for three consecutive days. Twenty four hr after the pre-treatment with rutaecarpine, the rats were treated with 20 mg/kg of intravenous CZX. Rat hepatic microsomes isolated from rutaecarpine-treated rats showed greater(50% increase) activity of p-nitrophenol hydroxylase(a marker of CYP2E1) when compared with the control rats. Compared with control rats, the AUC of CZX was significantly smaller(84% decrease) possibly due to significantly faster CL(646% increase) in rats pretreated with rutaecarpine. This could be, at least partially, due to induction of CYP2E1 by rutaecarpine.

Characteristics of $\beta$-Glucosidase Immobilized on the Modified Chitin in Bioresctors (수식 Chitin에 고정된 $\beta$-Glucosidase의 동특성)

  • 이경희;김종덕김병우송승구
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.279-291
    • /
    • 1990
  • Partial hydrolysed and deacetylated chitin, CHITA and CHITB as supports of immobilized enzyme were obtained by treatment of acid and base respectively. Glutaraldehyde, bifunctional reagent, was employed for crosslinking between $\beta$-glucosidase and support. Immobilized enzyme activities of CHITA-Gase and CHITB-Gase were determined with the reaction of p-nitrophenol-$\beta$-D-glucopyranoside(PNG) in batch reactor, CSTR and PFR. Their optimum temperature, pH and enzymatic characteristics including Km and Vmax values were observed with variation of the flow rates. Mass transfer coefficient(h), effectiveness factor(η), deactivation rate(kd ) of two immobilized enzymes were also examined to compare efficiency of reactors.

  • PDF

Differential Effects of Indole, Indole-3-carbinol and Benzofuran on Several Microsomal and Cytosolic Enzyme Activities in Mouse Liver (Indole, Indole-3-calbinol 및 Benzofuran이 간장 microsome과 cytosol의 약물대사 효소 활성도에 미치는 영향)

  • Cha, Young-Nam;Thompson, David C.;Heine, Henry S.;Chung, Jin-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1985
  • The effects of feeding indole, indole-3-carbinol and benzofuran (all at 5 mmole/kg body wt./day) on various hepatic microsomal and cytosolic enzyme activities involved in xenobiotic metabolism have been compared. Benzofuran was found to elevate the activities of many enzymes both in microsomes (e.g., aniline hydroxylase, 7-ethoxycoumarin O-deethylase, p-nitrophenol UDPGA-transferase and epoxide hydrolase) and in cytosol (e.g., glutathione reductase, glutathione S-transferase, NADH:quinone reductase and UDP-glucose dehydrogenase). The structures of indole and indole-3-carbinol are similar to benzofuran except for the substitution of nitrogen with oxygen atom within the furan ring. Results showed that the activities of UDPGA-transferase and NADH:quinone reductase were not elevated by these indole compounds. While the chemical structure of these two indole compounds are identical except for the presence of the carbinol (methanol) group in indole-3-carbinol, there were marked differences in the types and activities of microsomal enzymes that were enhanced. Among the microsomal enzyme activities determined, indole elevated only the NADPH:cytochrome c reductase, while indole-3-carbinol increased several mixed function oxidase and particularly the epoxide hydrolase activities. Based on the chemical structures of tested compounds and the observed results, possible explanations for the mechanisms involved in elevating epoxide hydrolase activity by benzofuran and indole-3-carbinol are discussed.

  • PDF