• Title/Summary/Keyword: p-harmonic functions

Search Result 24, Processing Time 0.016 seconds

Spectral Analysis of DC Link Ripple Currents in Three-Phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 직류링크 리플전류의 주파수 영역 해석)

  • 이동춘;박영욱;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.244-252
    • /
    • 2002
  • In this paper, do link ripple currents for three-phase ac/dc/ac PWM converters feeding adjustable speed ac machine drives are analysed in a frequency domain. The expression of the harmonic currents is developed by using switching functions of the converter and exponential courier series expansion. The effect of the displacement angle between the switching Periods of line-side converters and motor-side inverters on the dc link ripple currents is Investigated. Also, the influence of asynchronization of PWM is observed. The result of analysis is compared with frequency spectrum which results from PSIM simulation. The proposed analysis technique is useful to understand the principles of P% and to derive an equivalent model of the dc link capacitors in a high frequency range.

Measurement of picosecond laser pulsewidth and pulseshape by two-photon fluorescence and noncolloinear type I second harmonic generation method (이광자 형광법과 비공선 일종 이차고조파법에 의한 피코초 레이저 펄스폭과 펄스형 측정)

  • 한기호;박종락;이재용;김현수;엄기영;변재오;공흥진
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 1996
  • Two-Photon Fluorescence (TPF) experiment measures temporal width of an amplified short laser pulse which has passed through a four-pass Nd: glass amplifier, after selecting a single pulse from pulse train Q-switched and mode-locked(QSML) in Nd:YLF master oscillator. Determination of pulsewidth and pulseshape was also made with detection of autocorrelation trace of CW mode-locked pulse train by using noncollinear type I Second Harmonic Generation (SHG) method. The observed TPF track showed various patterns, depending on pulse-selecting position in QSML pulse train. That is, autocorrelation of a pulse extracted at front of the train displayed smooth pulse shape, while one from the trailing part of the train created many sharp spikes and substructure in the pulse. By TPF method, pulsewidth was measured to be 44.4 ps with contrast ratio of 2.86 which enabled us to find out energy fraction of a pulse to total energy, (sum of pulse and background); we obtain the value of 0.62. Pulsewidth of 46.6ps was also acquired in another SHG experiment with the help of only mode-locked pulse train. On the other hand, we confirmed that shape of the pulse is close to $sech^2$ one as a result of fitting the SHG autocorrelation signal with various functions. With simulation using this $sech^2$ type of pulse, pulsewidth reduction of the beam, having passed through four-pass amplifier, was also verified.

  • PDF

Analysis of Magnetic Fields Induced by Line Currents using Coupling of FEM and Analytical Solution (선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법)

  • Kim, Young-Sun;Cho, Dae-Hoon;Lee, Ki-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.141-145
    • /
    • 2006
  • The line current problem(2-dimensional space : point source) is not easy to analyze the magnetic field using the standard finite element method(FEM), such as overhead trolley line or transmission line. To supplement such a defect this paper is proposed the coupling scheme of analytical solution and FEM. In analysis of the magnetic field using the standard FEM. If the current region is a relatively small compared to the whole region. Therefore the current region must be finely divided using a large number of elements. And the large number of elements increase the number of unknown variables and the use of computer memories. In this paper, an analytical solution is suggested to supplement this weak points. When source is line current and the part of interest is far from line current, the analytical solution can be coupling with FEM at the boundary. Analytical solution can be described by the multiplication of two functions. One is power function of radius, the other is a trigonometric function of angle in the cylindrical coordinate system. There are integral constants of two types which can be established by fourier series expansion. Also fourier series is represented as the factor to apply the continuity of the magnetic vector potential and magnetic field intensity with tangential component at the boundary. To verify the proposed algorithm, we chose simplified model existing magnetic material in FE region. The results are compared with standard FE solution. And it is good agreed by increasing harmonic order.

Higher Order Shimming for Ultra-fast Spiral-Scan Imaging at 3 Tesla MRI System (3 Tesla MRI 시스템에서 초고속 나선주사영상을 위한 고차 shimming)

  • Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • Purpose: To acquire high-resolution spiral-scan images at higher magnetic field, high homogeneous magnetic field is needed. Field inhomogeneity mapping and in-vivo shimming are important for rapid imaging such as spiral-scan imaging. The rapid scanning sequences are very susceptible to inhomogeneity. In this paper, we proposed a higher-order shimming method to obtain homogeneous magnetic field. Materials and Methods: To reduce measurement time for field inhomogeneity mapping, simultaneous axial/ sagittal, and coronal acquisitions are done using multi-slice based Fast Spin echo sequence. Acquired field inhomogeneity map is analyzed using the spherical harmonic functions, and shim currents are obtained by the multiplication of the pseudo-inverse of the field pattern with the inhomogeneity map. Results: Since the field inhomogeneity is increasing in proportion to the magnetic field, higher order shimming to reduce the inhomogeneity becomes more important in high field imaging. The shimming technique in which axial, sagittal, and coronal section inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the imhomogenity map is applied. The proposed technique is applicable to a localized shimming as well. High resolution spiral-scan imaging was successfully obtained with the proposed higher order shimming. Conclusion: Proposed pulse sequence for rapid measurement of inhomogeneity map and higher order shimming based on the inhomogeneity map work very well at 3 Tesla MRI system. With the proposed higher order shimming and localized higher order shimming techniques, high resolution spiral-scan images are successfully obtained at 3 T MRI system.

  • PDF