• Title/Summary/Keyword: p-acetoxybenzoic acid

Search Result 4, Processing Time 0.02 seconds

Kinetic Consideration of Melt-copolymerization of Poly(butylene terephthalate) (PBT) and p-Acetoxybenzoic Acid (ABA) (폴리부틸렌테레프탈레이트와 파라아세톡시벤조산의 용융공중합 속도론에 대한 고찰)

  • 김도경;박수영;박종래
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2000
  • Poly(butylene terephthalate- co-oxybenzoate)(PBOT) containing mesogenic oxybenzoate units in the main chain was synthesized through ester exchange reaction by melt mixing of poly(butylene terephthalate)(PBT) and p-acetoxybenzoic acid (ABA). From the kinetics of the copolymerization reaction, the activation energies and the rate constants of homopolymerization and copolymerization, k$_{h}$ and k$_{c}$, could be determined. From the reaction conditions of different compositions, 4/6, 5/5, and 6/4 of PBT/ABA, at 250, 260, and 27$0^{\circ}C$, it was revealed that copolymerization between PBT and ABA proceeds on a pseudo-second order reaction if the ABA content and its conversion are low. In this case, the ratio of rate constants of homopolymerization to copolymerization was in the range from 1.08 to 3.17, indicating that the copolymer with more notable block character was obtained at the higher mole fraction of ABA and at higher temperature.e.e.

  • PDF

Sequence Structure and Thermal Property of Poly(butylene terephthalate) (PBT)/p-Acetoxybenzoic Acid (ABA) Copolymers Obtained Through Melt Trans-esterification Reaction (용융 에스테르 교환반응에 의해 제조된 폴리부틸렌테레프탈레이트/파라아세톡시벤조산 공중합체의 서열구조와 열적 성질)

  • 김도경;박수영;박종래
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.58-64
    • /
    • 2000
  • Poly(butylene terephthalate-co-oxybenzoate) (PBOT ) was synthesized by melt trans-esterification of poly(butylene terephthalate)(PBT) and p-acetoxybensoic acid (ABA) at 250, 260, and 27$0^{\circ}C$ with the compositions of PBT/ABA of 4/6, 5/5, 6/4. The sequence analysis of PBOT with a $^1$H FT-NMR indicated that the number of consecutive oxybenzoate units ranges from 1.2 to 1.5, which is larger than that of the corresponding poly(ethylene terephthalate)(PET)/ABA (PEOT) obtained at the same reaction conditions as the PBOT. The difference in the block length influenced the thermal degradation behavior: Polyoxybezoate (POB), PBT and PEOT showed one-step degradation whereas PBOT exhibited two-step degradation. The results suggested that PBOT consisted of three phases of PBT-rich phase, random phase of PBT and ABA, and ABA-rich phase.

  • PDF

Hydrophobic and Ionic Interactions in the Ester Hydrolysis by Imidazole-Containing Polymers

  • Cho Iwhan;Shin Jae-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.34-36
    • /
    • 1982
  • N-Methacryloyl-L-histidine and N-methacryloyl-L-histidine methyl ester were synthesized and polymerized to obtain polymeric catalysts with different functions. In the presence of each of these polymers the solvolytic reactions of p-nitrophenyl acetate (PNPA), 3-nitro-4-acetoxybenzoic acid(NABA), 3-acetoxy-N-trimethylanilinium iodide(ANTI) and 3-nitro-4-decanoyloxybenzoic acid(NDBA) were performed in 20% aqueous ethanol. For the purpose of comparison the low molecular weight analogs(LMWA's), L-histidine, L-histidine methyl ester and N-acetyl-L-histidine were also subjected to catalyze the solvolyses of above substrates. In the solvolysis of PNPA the polymeric catalysts exhibited lower activities than the LMWA's. However the ionic substrates, NABA and ANTI were solvolyzed at anomalous rate by polymeric catalyst, indicating that electrostatic effects are operative in the catalysis by polymers. Furthermore in the solvolysis of hydrophobic monomer NDBA, polymeric catalysts exhibited highly enhanced activities compared with the LMWA's implying that hydrophobic interaction can be the most important contribution to the high catalytic activity of imidazole-containing polymers.