• 제목/요약/키워드: p-AKT

검색결과 447건 처리시간 0.025초

Bee Venom Inhibits Angiogenesis by Decreasing HIF-1α Expression in HCT116 Cells (봉독의 HIF-1α 발현감소를 통한 혈관신생 억제효과)

  • Shin, Jae-Moon;Jeong, Yun-Jeong;Park, Kwan-Kyu;Choe, Jung-Yoon;Han, Sang-Mi;Lee, Kwang-Gill;Yeo, Joo-Hong;Chung, Il-Kyung;Chang, Young-Chae
    • Journal of Life Science
    • /
    • 제22권1호
    • /
    • pp.41-48
    • /
    • 2012
  • Bee venom (BV) has been used in medicine to treat a variety of diseases including arthritis, rheumatism, and various cancers. Recent reports indicate that BV has anti-angiogenic effects, but the precise molecular mechanism underlying the effects of BV against colorectal cancer remains to be elucidated. We examined the effects of BV and its major components (melittin and apamin) on tumor angiogenesis and found that BV significantly decreased protein levels of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$), an important factor involved in angiogenesis and tumor progression, in human colorectal carcinoma HCT116 cells. BV also suppressed the transcription of HIF-$1{\alpha}$ under hypoxia, leading to a decrease in the expression of vascular endothelial growth factor (VEGF), a major target gene of HIF-$1{\alpha}$. We also found that these effects were mainly elicited by apamin, but not melittin. BV specifically inhibited the phosphorylation of ERK1/2 without changing the total levels of this protein, but had no effect on kinases of p38/JNK and AKT. Our results suggest that BV may inhibit human colorectal cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$ and VEGF expression, thereby providing a novel potential mechanism for the anticancer action of BV.

Transcriptional Upregulation of Plasminogen Activator Inhibitor-1 in Rat Primary Astrocytes by a Proteasomal Inhibitor MG132

  • Cho, Kyu Suk;Kwon, Kyoung Ja;Jeon, Se Jin;Joo, So Hyun;Kim, Ki Chan;Cheong, Jae Hoon;Bahn, Geon Ho;Kim, Hahn Young;Han, Seol Heui;Shin, Chan Young;Yang, Sung-Il
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.107-113
    • /
    • 2013
  • Plasminogen activator inhibitor-1 (PAI-1) is a member of serine protease inhibitor family, which regulates the activity of tissue plasminogen activator (tPA). In CNS, tPA/PAI-1 activity is involved in the regulation of a variety of cellular processes such as neuronal development, synaptic plasticity and cell survival. To gain a more insights into the regulatory mechanism modulating tPA/PAI-1 activity in brain, we investigated the effects of proteasome inhibitors on tPA/PAI-1 expression and activity in rat primary astrocytes, the major cell type expressing both tPA and PAI-1. We found that submicromolar concentration of MG132, a cell permeable peptide-aldehyde inhibitor of ubiquitin proteasome pathway selectively upregulates PAI-1 expression. Upregulation of PAI-1 mRNA as well as increased PAI-1 promoter reporter activity suggested that MG132 transcriptionally increased PAI-1 expression. The induction of PAI-1 downregulated tPA activity in rat primary astrocytes. Another proteasome inhibitor lactacystin similarly increased the expression of PAI-1 in rat primary astrocytes. MG132 activated MAPK pathways as well as PI3K/Akt pathways. Inhibitors of these signaling pathways reduced MG132-mediated upregulation of PAI-1 in varying degrees and most prominent effects were observed with SB203580, a p38 MAPK pathway inhibitor. The regulation of tPA/PAI-1 activity by proteasome inhibitor in rat primary astrocytes may underlie the observed CNS effects of MG132 such as neuroprotection.

Apoptotic Cell Death by Melittin through Induction of Bax and Activation of Caspase Proteases in Human Lung Carcinoma Cells (Bax의 발현증가 및 Caspase의 활성을 통한 봉독약침액 Melittin의 인체폐암세포 Apoptosis 유발에 관한 연구)

  • Ahn, Chang-beohm;Im, Chun-woo;Kim, Cheol-hong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Choi, Yung-hyun
    • Journal of Acupuncture Research
    • /
    • 제21권2호
    • /
    • pp.41-55
    • /
    • 2004
  • Objective : To investigate the possible molecular mechanism (s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods : Growth inhibitory study, flow cytometry analysis, SDS-polyacrylamide gel electrophoresis and Western blot analysis, RT-PCR and in vitro caspases activity assay were performed. Results : Melittin treatment declined the cell viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Melittin treatment down-regulated the levels of Bcl-XS/L mRNA and protein expression of A549 cells, an anti-apoptotic gene, however, the those of Bax, a pro-apoptotic gene, were up-regulated. Melittin induced the proteolytic cleavage and activation of caspase-3 and caspase-9 protease in a dose-dependent manner without alteration of inhibitor of apoptosis proteins family and Akt expression. Western blot analysis and RT-PCR data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were also remained unchanged. Conclusions : Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

Substitution of Heavy Complementarity Determining Region 3 (CDR-H3) Residues Can Synergistically Enhance Functional Activity of Antibody and Its Binding Affinity to HER2 Antigen

  • Moon, Seung Kee;Park, So Ra;Park, Ami;Oh, Hyun Mi;Shin, Hyun Jung;Jeon, Eun Ju;Kim, Seiwhan;Park, Hyun June;Yeon, Young Joo;Yoo, Young Je
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.217-228
    • /
    • 2016
  • To generate a biobetter that has improved therapeutic activity, we constructed scFv libraries via random mutagenesis of several residues of CDR-H3 and -L3 of hu4D5. The scFv clones were isolated from the phage display libraries by stringent panning, and their antiproliferative activity against HER2-positive cancer cells was evaluated as a primary selection criterion. Consequently, we selected AH06 as a biobetter antibody that had a 7.2-fold increase in anti-proliferative activity ($IC_{50}$: 0.81 nM) against the gastric cancer cell line NCI-N87 and a 7.4-fold increase in binding affinity ($K_D$: 60 pM) to HER2 compared to hu4D5. The binding energy calculation and molecular modeling suggest that the substitution of residues of CDR-H3 to W98, F100c, A101 and L102 could stabilize binding of the antibody to HER2 and there could be direct hydrophobic interactions between the aromatic ring of W98 and the aliphatic group of I613 within HER2 domain IV as well as the heavy and light chain hydrophobic interactions by residues F100c, A101 and L102 of CDR-H3. Therefore, we speculate that two such interactions were exerted by the residues W98 and F100c. A101 and L102 may have a synergistic effect on the increase in the binding affinity to HER2. AH06 specifically binds to domain IV of HER2, and it decreased the phosphorylation level of HER2 and AKT. Above all, it highly increased the overall level of p27 compared to hu4D5 in the gastric cancer cell line NCIN82, suggesting that AH06 could potentially be a more efficient therapeutic agent than hu4D5.

In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng

  • Hossen, Muhammad Jahangir;Hong, Yong Deog;Baek, Kwang-Soo;Yoo, Sulgi;Hong, Yo Han;Kim, Ji Hye;Lee, Jeong-Oog;Kim, Donghyun;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.43-51
    • /
    • 2017
  • Background: BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods: We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-${\beta}$ (TRIF), to measure the activation of nuclear factor (NF)-${\kappa}B$ and interferon regulatory factor 3 (IRF3). Results: BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-${\beta}$ and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-${\kappa}B$ (p50 and p65). This extract inhibited the upregulation of NF-${\kappa}B$-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of ${\kappa}B$ ($I{\kappa}B{\alpha}$) kinase ($IKK{\beta}$), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-${\kappa}B$ pathway by blocking $IKK{\beta}$ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/$IKK{\beta}$/TBK1 overexpression strategy. Conclusion: Overall, our data suggest that the suppression of $IKK{\beta}$ and TBK1, which mediate transcriptional regulation of NF-${\kappa}B$ and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.

Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects

  • Wan, Yan;Wang, Jing;Xu, Jin-feng;Tang, Fei;Chen, Lu;Tan, Yu-zhu;Rao, Chao-long;Ao, Hui;Peng, Cheng
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.617-630
    • /
    • 2021
  • Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural nontoxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun Nterminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

A Network Pharmacology-based Study to Explore the Potential Mechanism of Artemisia capillaris Thunb. for Psoriasis Vulgaris (네트워크 약리학을 활용한 심상성 건선에 대한 인진호(茵蔯蒿)의 잠재적 작용 기전 탐색 연구)

  • Kim, Jundong;Seo, Gwang-Yeel;Kim, Byunghyun;Lee, Hanlim;Kim, Kyu-Seok;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • 제35권3호
    • /
    • pp.15-24
    • /
    • 2022
  • Objectives : The purpose of this study is to investigate the potential mechanism of Artemisia capillaris Thunb. for psoriasis vulgaris. Methods : We conducted the network pharmacological analysis. It contains the process that search the compounds of the herb, the target proteins of the compounds, related genes of psoariasis vulgaris and the pathway/terms of the common protein lists between psoriasis vulgaris and Artemisia capillaris Thunb.. Results : 13 compounds and 30 protein targets of Artemisia Capillaris Herba were searched. And 997 psoriasis-related genes were searched. The common proteins were 11, and the core genes were 3; AKT1, CASP3, MAPK8. The related pathway/terms of 11 proteins were analyzed. ω-hydroxylase P450 pathway(60%), nitric oxide(NO) biosynthetic process(20%) were resulted. Also, 19 proteins of Artemisia Capillaris Herba were analyzed, and sterol homeostasis(78.95%), sterol biosynthetic process(15.79%), Type 2 diabetes mellitus(5.26%) were resulted. Conclusion : The Artemisia Capillaris Herba can potentially act through the ω-hydroxylase P450 pathway and nitric oxide(NO) biosynthetic process for psoriasis. Also, the metabolism of sterol biosynthesis and homeostasis can be involved in a roundabout way for psoriasis.

LP-M, a Novel Butanol-Extracts Isolated from Liriope platyphylla, could Induce the Neuronal Cell Survival and Neuritic Outgrowth in Hippocampus of Mice through Akt/ERK Activation on NGF Signal Pathway (맥문동(Liriope platyphylla)의 새로운 부탄올 추출물인 LP-M이 Akt/ERK NGF receptor signaling pathway를 통해 뇌조직에서 신경세포의 생존과 성장에 미치는 영향에 관한 연구)

  • Nam, So-He;Choi, Sun-Il;Goo, Jun-Seo;Kim, Ji-Eun;Lee, Yoen-Kyung;Hwang, In-Sik;Lee, Hye-Ryun;Lee, Young-Ju;Lee, Hong-Gu;Choi, Young-Whan;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • 제21권9호
    • /
    • pp.1234-1243
    • /
    • 2011
  • Liriope platyphylla has been used in oriental medicine as an effective medical plant to improve symptoms of cough, sputum production, neurodegenerative disorders, obesity and diabetes for long time. In order to investigate the effects of novel extracts on nerve growth factors (NGF)-stimulated neuritic outgrowth, the alteration of NGF expression and NGF receptor signaling pathway were detected in neuroblastoma cells and C57BL/6 mice. Of a total of 13 novel extracts, 4 extracts (LP-E, LP-M, LP-M50, LP2E17PJ) showed high viability on MTT assay. Also, all of these extracts induced NGF secretion and NGF mRNA expression in neuroblastoma cells. However, the NGF-induced neuritic outgrowth from PC12 cells was only stimulated by LP-E, LP-M and LP-M50. Furthermore, we selected LP-M as a best candidate, based on method and amounts of extraction, in order to verify its effect in mice. C57BL/6 mice were treated with 50 mg/kg of LP-M for 2 weeks and the effects on NGF regulation were analyzed with various methods. The expression of NGF mRNA was significantly increased in LP-M treated mice compared to vehicle treated mice. Also, the signaling pathway of p75NTR was inhibited in the cortex by LP-M treatment, with no change in the hippocampus of brain. However, the signaling pathway of TrkA was dramatically activated in only hippocampus via LP-M treatment. Therefore, these results suggest that the novel four extracts of L. platyphylla may contribute to the regulation of NGF expression and secretion in neuronal cells. LP-M was especially considered to be an excellent candidate for a neurodegenerative disease-therapeutic drug.

Rehmannia Glutinosa Pharmacopuncture Solution Regulates Functional Activation, FcεRI Expression, and Signaling Events in Mast Cells

  • Kang, Kyung-Hwa;Lee, Kyung-Hee;Yoon, Hyun-Min;Jang, Kyung-Jeon;Song, Chun-Ho;Kim, Cheol-Hong
    • Journal of Pharmacopuncture
    • /
    • 제15권4호
    • /
    • pp.32-41
    • /
    • 2012
  • Objectives: Rehmannia glutinosa pharmacopuncture solution (RGPS) was investigated to determine both its anti-allergic inflammatory effects on mast cells and its detailed mechanism of actions. Methods: We investigated whether RGPS suppress cytokines, enzymes, $Fc{\varepsilon}RI$ expression and $Fc{\varepsilon}RI$-mediated signaling in RBL-2H3 cells stimulated with anti-DNP IgE/DNP-HSA. The suppressive effects of RGPS on the levels of cytokines such as IL-$1{\beta}$, IL-6 and GM-CSF were measured using emzyme-linked immunospecific assay (ELISA). The mRNA expression levels of cytokines, enzymes (HDC2, COX-1, COX-2 and 5LO) and $Fc{\varepsilon}RI$ ${\alpha}{\beta}{\gamma}$ subunits were measured using reverse transcription polymerase chain reaction (RT-PCR) method. The activation of $Fc{\varepsilon}RI$-mediated signaling was examined using Western blot analyses. Results: RGPS suppressed production of proinflammatory cytokines (IL-$1{\beta}$, IL-6, and GM-CSF) in stimulated RBL-2H3 cells significantly (p < 0.05). RGPS also suppressed mRNA expression of inflammatory enzymes (HDC2, COX-1, COX-2, 5LO). In addition, mRNA expression levels of $Fc{\varepsilon}RI{\alpha}$, $Fc{\varepsilon}RI{\beta}$and $Fc{\varepsilon}RI{\gamma}$ were lowered by treatment with RGPS. Finally, RGPS prevented phosphrylation of Lyn, Syk, LAT, Gab2, PLC ${\gamma}1/2$, PI3K, Akt, cPLA2 and $I{\kappa}B{\alpha}$. Conclusions: RGPS effectively suppresses mast cell activations such as degranulation and inflammatory response via down-regulation of the $Fc{\varepsilon}RI$-mediated signaling pathways in IgE/Ag-stimulated mast cells.

Detection of PIK3CA Gene Mutations with HRM Analysis and Association with IGFBP-5 Expression Levels in Breast Cancer

  • Dirican, Ebubekir;Kaya, Zehra;Gullu, Gokce;Peker, Irem;Ozmen, Tolga;Gulluoglu, Bahadir M.;Kaya, Handan;Ozer, Ayse;Akkiprik, Mustafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9327-9333
    • /
    • 2014
  • Breast cancer is the second most common cancer and second leading cause of cancer deaths in women. Phosphatidylinositol-3-kinase (PI3K)/AKT pathway mutations are associated with cancer and phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene mutations have been observed in 25-45% of breast cancer samples. Insulin growth factor binding protein-5 (IGFBP-5) can show different effects on apoptosis, cell motility and survival in breast cancer. We here aimed to determine the association between PIK3CA gene mutations and IGFBP-5 expressions for the first time in breast cancer patients. Frozen tumor samples from 101 Turkish breast cancer patients were analyzed with high resolution melting (HRM) for PIK3CA mutations (exon 9 and exon 20) and 37 HRM positive tumor samples were analyzed by DNA sequencing, mutations being found in 31. PIK3CA exon 9 mutations (Q546R, E542Q, E545K, E542K and E545D) were found in 10 tumor samples, exon 20 mutations (H1047L, H1047R, T1025T and G1049R) in 21, where only 1 tumor sample had two exon 20 mutations (T1025T and H1047R). Moreover, we detected one sample with both exon 9 (E542Q) and exon 20 (H1047R) mutations. 35% of the tumor samples with high IGFBP-5 mRNA expression and 29.4% of the tumor samples with low IGFBP-5 mRNA expression had PIK3CA mutations (p=0.9924). This is the first study of PIK3CA mutation screening results in Turkish breast cancer population using HRM analysis. This approach appears to be a very effective and reliable screening method for the PIK3CA exon 9 and 20 mutation detection. Further analysis with a greater number of samples is needed to clarify association between PIK3CA gene mutations and IGFBP-5 mRNA expression, and also clinical outcome in breast cancer patients.