• Title/Summary/Keyword: p-38

Search Result 9,516, Processing Time 0.034 seconds

Effects of Hope, Grateful Disposition, Workplace Spirituality on Organizational Citizenship Behavior among Nurses (간호사의 희망, 감사성향, 일터영성이 조직시민행동에 미치는 영향)

  • Lim, So-Hee;Choi, Eun-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.277-286
    • /
    • 2017
  • This study assesses the association of nurses' hope, grateful disposition, and workplace spirituality with the goals of providing human resource management plans that lead to efficient and competitive nurse structure by building a nurse organizational culture based on analyzing the influences affecting organizational citizenship behavior. Participants were 147 nurses working in four general hospitals in Seoul and Gyeonggi-do. The survey data were analyzed by frequencies, t-test, ANOVA, Pearson correlation coefficients and multiple stepwise regression via SPSS WIN 18.0. Results showed that organizational citizenship behavior is positively associated with nurse's hope (${\gamma}=.22{\sim}.36$, p<.001), grateful disposition (${\gamma}=.38$, p<.001) and workplace spirituality (${\gamma}=.38{\sim}.54$, p<.001). The significant predictors of organizational citizenship behavior were workplace spirituality (${\beta}=.54$, p<.001), hope of turnover (${\beta}=.12$, p<.001), hope (${\beta}=.09$, p<.001) and grateful disposition (${\beta}=.08$, p<.001), which explained 41.6% of the variance in organizational citizenship behavior. This study systematizes a theory for workplace spirituality processing the early stage research in nurse structure. To improve organizational citizenship behavior among nurses, educational programs and supporting systems should be developed to increase nurses' hope, disposition of grateful disposition, and workplace spirituality.

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

Comparative Study of Korean Mistletoe Lectin and Bee Venom on the Anti-Cancer Effect and Its Mechanisms of Action in Hepatocellular Carcinoma Cells (상기생과 봉독이 간암 세포주 Hep G2에 대해 미치는 항암 기전 비교)

  • Kim, Sung-Uk;Kim, Bo-Ram;Heo, Kyung;Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.845-857
    • /
    • 2009
  • Background and Objectives : Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) have been reported to induce apoptosis in various cancer cell lines in vitro and to show antitumor activity against a variety of tumors in animal models. However, the comparative effect of VCA and BV on the anti-cancer effect and mechanisms of action has not been determined. In this study, the effect in a human hepatocellular carcinoma cell line, Hep G2 cells, was examined. Methods : Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay in litro. The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action were examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. The involvement of kinase was examined in VCA or BV-induced apoptosis by using kinase inhibitors. Results : VCA and BV killed Hep G2 cells in a time and dose-dependent manner. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including MAPK/ERK, p38 MAPK and JNK. BV also activated PARP-1, MAPK/ERK. and p38 MAPK but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not by BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. VCA-induced apoptosis was partially inhibited by in the presence of JNK and p38 inhibitor, but BV only by p38 inhibitor. Conclusions : VCA-induced apoptosis is dependent on the activation of p38 and JNK. while BV-induced apoptosis is mediated by p38 activation in Hep G2 cells.

  • PDF

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

Evidence for the Association of Ce11u1ar Iron Loss in Nitric Oxide-induced Apoptosis of HL-60 Cells: Involvement of p38 Kinase, c-Jun N-terminal Kinase, Cytochrome C Release, and Caspases Pathways

  • Choi, Suck-Chei;Kim, Beom-Su;Yoon, Kwon-Ha;Song, Moon-Young;Oh, Hyun-Mee;Han, Weon-Cheol;Kim, Tae-Hyeon;Kim, Eun-Cheol;Jun, Chang Duk
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.171-180
    • /
    • 2002
  • Nitric oxide has high affinity for iron, and thus it can cause intracellular iron loss. We tested the idea that intracellular iron can be the primary target of NO toxicity by comparing the signaling mechanisms involved in cell death caused by iron depletion and that caused by NO. Treatment of HL-60 cells with a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), decreased the intracellular iron level rapidly as that observed with the iron chelator deferoxamine (DFO). Iron chelators such as DFO and mimosine could induce death of human leukemic HL-60 cells by a mechanism requiring activation of p38 kinase, c-Jun N-terminal kinase, caspase-3 and caspase-8. DFO and SNAP also caused release of cytochrome c from mitochondria. Inhibition of p38 kinase by a selective inhibitor, SB203580, abolished the NO and DFO-induced cell death, release of cytochrome c, and activation of caspase-3 and caspase-8, thus indicating that p38 kinase lies upstream in the cell death processes. In a parallel situation, the cells that are sensitive to NO showed similar sensitivity to DFO. Moreover, simultaneous addition of ferric citrate, an iron-containing compound, inhibited the SNAP and DFO-induced activation of caspases and also blocked the NO-mediated cell cycle arrest at $G_1$ phase. Collectively, our data implicate that the NO-induced cell death of tumor cells including HL-60 cells is mediated by depletion of iron and further suggest that activation of p38 kinase lies upstream of cytochrome c release and caspase activation involved in this apoptotic process.

Phorbol Ester-induced Contraction Through p38 Mitogen-activated Protein Kinase is Diminished in Aortas from DOCA-Salt Hypertensive Rats

  • Lee, Chang-Kwon;Kim, Jung-Kwan;Won, Kyung-Jong;Lee, Hwan-Myung;Kim, Hyo-Jin;Roh, Hui-Yul;Park, Hyo-Jun;Shin, Hwa-Sup;Park, Tae-Kyu;Kim, Bo-Kyung;Lee, Sang-Mok
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1024-1031
    • /
    • 2006
  • The role of mitogen-activated protein kinase (MAPK) in the decreased contractile response to phorbol ester in aortic smooth muscle strips from deoxycorticosterone acetate (DOCA)-salt hypertensive rats was examined. Norepinephrine (NE) evoked greater contractility in aortic strips from DOCA rats than in those of sham-operated rats. 12-Deoxyphorbol 13-isobutyrate (DPB) induced contraction in $Ca^{2+}-free$ medium, which was diminished in strips from DOCA rats compared to sham-operated rats. Vasoconstrictions induced by these stimulants were inhibited by SB203580 and PD098059, inhibitors of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2, respectively, in both strips. The phosphorylation of p38 MAPK and ERK1/2 induced by NE was greater in strips from DOCA rats compared to those from sham-operated rats, and this phosphorylation was inhibited by the kinase inhibitors. DPB increased the phosphorylation of p38 MAPK and ERK1/2 in strips from both animals, and the increment of p38 MAPK phosphorylation by the stimulant was diminished in strips from DOCA rats compared to sham-operated rats. These findings suggest that the $Ca^{2+}-independent$ contraction evoked by DPB results from the activation of MAPKs in rat aortic smooth muscle and that the attenuated contractility by DPB in DOCA rat appears to be associated with diminished p38 MAPK activity.

Effects of Protein Kinase G on Phospholipase D Activity of Human Neutrophils (호중구에서 phospholipase D의 활성에 대한 protein kinase G의 영향)

  • 박지연;이민정;장민정;이선영;배외식;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.903-910
    • /
    • 2003
  • Phospholipase D (PLD) plays an important role as a signaling molecule in the activation of neutrophils. In this study, effect of nitric oxide (NO) and cGMP on the activation of PLD in human neutrophils was investigated. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased PLD activity and the maximal activation was obtained with 0.5 mM SNP. Dibutyryl-cAMP, an agent to increase an intracellular cAMP concentration inhibited formyl-Met-Leu-Phe (fMLP)-stimulated PLD activity but 8-bromo-cGMP (300 $\mu$M), an agent to increase an intracellular cGMP concentration did not affect basal and fMLP-stimulated PLD activity. NO-induced activation of PLD was not blocked by KT 5823, an inhibitor of cGMP-dependent protein kinase (PKG), suggesting that NO-induced PLD activation is not mediated by cGMP. NO also stimulated p38 mitogen activated protein kinase (MAPK) in human neutrophils, indicated by increased phosphorylation of p38 MAPK in Western blotting. NO-induced phosphorylation of p38 MAPK was not inhibited by KT 5823 or n-butanol. RhoA, an regulatory factor of PLD activation was trans-located from cytosolic fraction to plasma membranes by fMLP or phorbol ester, and fMLP-stimulated but not phorbol ester-stimulated translocation of RhoA was inhibited by cGMP. These results suggest that NO stimulates PLD activity through other unidentified facto.(s) than cGMP even though cGMP inhibits the artivation of RhoA.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.

Expression of the 38 kDa Protein of Mycobacterium tuberculosis in M. bovis BCG and Use in the Serodiagnosis of Tuberculosis

  • Cho, Sang-Nae;Kim, Hee-Jin;Lee, Hye-Young;Kim, Seung-Chul;Kim, Joo-Deuk
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.555-559
    • /
    • 1999
  • The 38 kDa protein of Mycobacterium tuberculosis, which was known previously as antigen 5, has been extensively used in the serodiagnosis of tuberculosis. In an attempt to develop and evaluate a serodiagnostic test using the antigen, we expressed the 38 kDa protein in BCG and its seroreactivity was compared to that expressed in Escherichia coli. The coding region of the 38 kDa protein was amplified by PCR, and the gene was cloned into a Mycobacterium-E. coli shuttle expression vector pYMC-his and pQE30 expression vector and expressed in BCG and E. coli, respectively. Both recombinant 38 kDa proteins showed strong seroreactivity against pooled serum from tuberculosis patients. There was no significant difference in seroreactivity between the two recombinant antigens in sera from the far advanced tuberculosis patients. However, of 25 tuberculosis patients graded as "minimal" by chest X-ray, 5 (20.0%) were seropositive by r38 kDa expressed in E. coli, while 8 (32.0%) by that expressed in BCG. Likewise, higher seroreactivity by r38 kDa expressed in BCG was found in sera from the moderately advanced tuberculosis. This study thus indicates that the recombinant 38 kDa expressed in BCG is more effective than that expressed in E. coli in detecting antibodies to the native 38 kDa protein of M. tuberculosis in sera from minimally affected tuberculosis patients.

  • PDF

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.