• Title/Summary/Keyword: oxygenator

Search Result 92, Processing Time 0.019 seconds

Clinical Application of OXYREX Hollow Fiber Membrane Oxygenator (국산 막형 산화기 (OXYREX)의 체외순환 임상 성적 - 개심수술 40례 적용 -)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.23 no.6
    • /
    • pp.1049-1056
    • /
    • 1990
  • The OXYREX hollow fiber membrane oxygenator developed by joint work of KIST and Green Cross Medical company has been evaluated by experimental investigation and clinical application, In this oxygenator gas exchanges occur through small pores of 0.1pm size which are distributed on 70% of surface of polypropylene hollow fiber. The Oxyrex membrane oxygenator consists of 36 thousand hollow fibers and it has 3.3m2 of gas exchange surface. The Oxyrex membrane oxygenator has unique blood flow path: blood enters the oxygenator passes between the hollow fibers and exits through outlet ports, that provides low transmembrane pressure drop. In the animal experiment and in vitro investigations of Oxyrex oxygenator, it showed low transmembrane pressure difference, effective heat exchanger performance, stable gas transfer function and less blood trauma. The Oxyrex oxygenator been used from March, 1990, to October, 1990, in 40 patients undergoing open heart operations. In the clinical applications of Oxyrex, adequate oxygenation[PaO2, 283$\pm$70mmHg] and carbon dioxide removal[PaCO2, 27\ulcorner6mmHg]were maintained under the condition of FiO2: below 0.6, Hct; 25%, perfusion flow; 2.4 L/min, gas flow: 2.1 L/min. During maximum 365 minutes of cardiopulmonary bypass[CPB] time period, the Oxyrex oxygenator maintained stable condition of PaO2, PaCO2 respectively and it also kept low plasma hemoglobin level. The complement proteins C3 and CH50 were not significantly changed pre to post CPB. There were no complications related to the oxygenator during and after the CPB.

  • PDF

Effect of Cardiopulmonary Bypass on Platelet (개심술시 체외순환이 혈소판에 미치는 영향)

  • 최대융
    • Journal of Chest Surgery
    • /
    • v.25 no.5
    • /
    • pp.526-532
    • /
    • 1992
  • The effect of cardiopulmonary bypass on platelet count and function was studied in 20 patients who underwent cardiac operation from April 1991 to August 1991 at the Department of thoracic and Cardiovascular Surgery, School of Medicine, Keimyung University. Ten patients were perfused with a bubble oxygenator, 10 with a membrane oxygenator. During and after bypass, platelet counts decreased in both groups and significantly reduced in those perfused with a bubble oxygenator. All 20 patients studied for platelet functions had an abnormal postoperative aggregation response to collagen and epinephrine, but no significant difference in both groups. One hour after bypass, bleeding times increased in both groups but did not differ significantly between groups. Postoperative 24 hour blood losses were significantly higher in patients perfused with a membrane oxygenator. Platelet damage and postoperative blood loss are less severe after cardiopulmonary bypass performed with a membrane oxygenator than with a bubble oxygenator.

  • PDF

Preliminary Study of a New Extracorporeal Membrane Oxygenator Development When Using Pulsatile Flow

  • Lee, Sa-Ram;Lee, Kyung-Soo;Jung, Jae-Hoon;Mun, Cho-Hay;Min, Byoug-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.387-391
    • /
    • 2007
  • An oxygenator is a very important artificial organ and widely used for patients with lung failure or during open heart surgery. Although an oxygenator has been widely studied worldwide to enhance its efficiency, studies on oxygenators, in particular when using a pulsatile blood flow, are domestically limited. Therefore, a new oxygenator was developed in the lab and animal experimental results are described in the paper. The oxygenator is composed of polycarbonate housing and polypropylene hollow fibers. It has a total length of 400 mm and a surface area of $1.7 m^2$. The animal experiment lasted for 4 hours. The blood flow rate was set to 2 L/min and a pulsatile blood pump, T-PLS (Twin-Pulse Life Support), was used. Samples were drawn at the oxygenator's inlet and outlet. The total hemoglobin (Hb), saturation oxygen ($sO_2$), and partial oxygen pressure ($pO_2$), partial $CO_2$ pressure ($pCO_2$), and plasma bicarbonate ion concentration ($HCO_3^-$) were measured. The oxygen and carbon dioxide transfer rates were also calculated based on the experimental data in order to estimate the oxygenator's gas transfer efficiency. The oxygen and carbon dioxide transfer rates were $16.4{\pm}1.58$ and $165.7{\pm}10.96 mL/min$, respectively. The results showed a higher carbon dioxide transfer rate was achieved with the oxygenator. Also, the mean inlet and outlet blood pressures were 162.79 and 137.92 mmHg, respectively. The oxygenator has a low pressure drop between its inlet and outlet. The aim of own preliminary study was to make a new oxygenator and review its performance when applying a pulsatile blood pump thus, confirming the possibility of a new oxygenator suitable for pulsatile flow.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

Design & Animal Experiment of Artificial Oxygenator (인공폐(산화기) 제작과 실험)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.15 no.2
    • /
    • pp.259-265
    • /
    • 1982
  • We have designed a new type of bubble oxygenator (KOREA-KIM VENOTHERM OXYGENATOR) made of PVC sheet and deforming mesh incorporated in the heat exchanger, and evaluated in experimental animal for the analysis of it`s efficiency. The Oxygenator has low priming volume with high flow rate up to 6 L/rain, and efficiency of heat exchanger was excellent as 1-$1.5^{\circ}C.$ using total cardiopulmonary bypass method under moderate to deep hypothermia. Average priming volume of 1317 ml with 30% hemodilution method was perfused with an average of 1.1-3.0 L/min.$M^2$of arterial blood and pure oxygen at a rate of 2-3.4 L/min for 49.6 minutes continuously in average. During total cardiopulmonary bypass, average $PaO_2$ was $159.8{\pm}60$mmHg, $PaCO_2$ $41.0{\pm}3$mmHg respectively under $SaO_2$ over 96% with systolic arterial pressure of 70 mmHg and CVP of 5-10 cm$H_2O$. Plasma free Hemoglobin was $7.0{\pm}4$ mg/dl with 25% drop of hemoglobin and hematocrit at the end of cardiopulmonary bypass. This KKV Oxygenator was observed to have excellent capabillty of oxygen and carbon dioxide gas transfer with small amount of blood trauma, and the efficiency of heat exchanger was satisfactory during cooling and rewarming of the bubbled blood. Disadvantages have included the somewhat poor deforming effect due to loose PVC fiber mesh, the extracompact character of Teflon filters, and the rough inner surface of the heat exchanger copper pipes.

  • PDF

A Clinical Study on Change of Platelet Count Associated with Extracorporeal Circulation (체외 순환에 따른 혈소판수의 변화에 관한 임상적 연구)

  • 김영진
    • Journal of Chest Surgery
    • /
    • v.25 no.3
    • /
    • pp.240-246
    • /
    • 1992
  • The effects of extracorporeal circulation on plateler count were studied in 120 patients. We measured platelet count before, during, after extracorporeal circulation, and postoperative 0, 1, 3, 5, 7, 9, 11th days to evaluate the effects of total extracorporeal circulation time and types of oxygenator on changes of platelet count The patients were classified into group I [extracorporeal circulation time < 100 minutes, 45 patients], II [100 < extracorporeal circulation time < 200 minutes, 48 patients], III [extracorporeal circulation time >200 minutes, 27 patients], and also all patients were classified into group B [bubble oxygenator, 84 patients] and group M [membrane oxygenator, 36 patients]. The group I, II, III were subclassified into IB, IM, IIB, IIM, IIIB and IIIM according to the types of oxygenator. The results were as follows: 1. The platelet counts were reduced throughout extracorporeal circulation and in the early postoperative periods upto postoperative third day. 2. The platelet counts after postoperative 9th to 11th day increased significantly compared with those of preoperative levels. 3. After extracorporeal circulation, the platelet recovered gradually in all groups, especially faster in group I compared with those of group II and III. 4. The effect of the type of oxygenator on the recovery of platelet count was not significant. In conclusion, extracorporeal circulation time influenced the change of platelet count. Therefore, in order to prevent of decrease of platelet count associated with extracorporeal circulation time, the extracorporeal circulation time should be shortened.

  • PDF

A Study on Effect to Complement Activation and Pulmonary Leukostasis During Cardiopulmonary bypass: Comparison of Bubble Oxygenator and Membrane Oxygenator (체외순환이 보체활성화화 백혈구의 폐내 정체에 미치는 영향에 관한 연구)

  • Kim, Yang-Won;Choe, Seok-Cheol;Jo, Gwang-Hyeon
    • Journal of Chest Surgery
    • /
    • v.28 no.7
    • /
    • pp.649-657
    • /
    • 1995
  • From December 1993 to April 1994, to investigate complement activation and pulmonary leukostasis, thirty adult patients were studied during cardiopulmonary bypass[CPB for cardiac surgery in Department of Cardiovascular & Thoracic Surgery, Pusan Paik Hospital, Inje University. Total patients were divided into group I and II according to the purpose of study ; Group I was 15 patients undergoing CPB with bubble oxygenator, Group II was 15 patients undergoing CPB with membrane oxygenator. The results of study were summarized as follows.1. The decrease of C3 and C4 levels were observed within few minutes of beginning of CPB in all patients[P<0.05 , and this decrease was proved to be due to complement activation, not by the influence of hemodilution.2. In the correlation between the change of C3 and C4, group I showed linear correlation each other suggesting complement activation occurred through the classical pathway, group II showed a correlation at only partial sampling times suggesting complement activation via both classical and alternative pathway, however there was no significant statistical difference at the change of C3 and C4 concentrations in two groups[P>0.05 .3. After switching to partial CPB, a few difference between right atrial and left atrial WBC count was observed, but statistically not significant and median cell count difference between group I and II was not significant, too [P>0.05 . With the above result, we concluded that CPB itself contributes to the activation of complement system, but bubble oxygenator does not activate always complement system more than membrane oxygenator.

  • PDF

Clinical Comparison Between Inside Blood Flow Type and Outside Blood Flow Type in the Hollow Fiber Oxygenator (Hollow Fiber Oxygenator에서 Inside Blood Flow Type과 Outside Blood Flow Type의 임상적 비교)

  • 안재호
    • Journal of Chest Surgery
    • /
    • v.25 no.5
    • /
    • pp.451-457
    • /
    • 1992
  • The hollow fiber oxygenator is the most advanced one for the cardiopulmoanry bypass. They have two different types of the hollow fiber systems according to the way how the blood go through the fibers. One is inside blood flow type and the other outside type. In order to find out which is better to prevent blood cell destruction, we selected 40 valve replacing patients and divided them into 2 groups prospectively. In group I [n=20], inside blood flow type[BCM-7a], CO2 excretion is more effective than group II, that is partly because of the relative large surface area of the BCM-7. In group II [n=20], outside blood flow type [MAXIMAa], they have better quality to preserve platelet count. We also studied about several other items such as SaO2, Hemoglobin and RBC, WBC, fibrinogen, LDH, plasma hemoglobin, haptoglobulin and so on. But we cannot find any differences between two groups with any statistical meanings [p<0.05]. We conclude that both of two oxygenators are excellent in the aspects of gas exchange and blood cell preservation.

  • PDF

Development of Portable Cardiopulmonary Support System (이동형 심폐보조시스템의 개발)

  • Lee, Hyuk-Soo;Min, Byoung-Goo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.94-99
    • /
    • 2007
  • Many cases of acute cardiac shock and cardiac arrest in emergency room and ICU have been increasing. In this case, ECMO with centrifugal pump has been used generally. However, due to the heavy weight and big size, the system is not adequate for emergency cases. And other defects of this system are that membrane oxygenator's pressure is high and blood are exposed to the air. There was some tries of ECMO using pulsatile pump, but it was found that the weak point of these system is high peak pressure and hemolysis. The mechanism of twin pulsatile pump is that Membrane oxygenator Outlet Pump(MOP) make negative pressure when Membrane oxygenator Inlet Pump(MIP) provides high positive pressure, and the negative pressure will decrease positive pressure of Membrane Oxygenator. Our group analyzed this advantage through In-Vitro and 12 Cases In-Vivo test.

Effect of Cardiopulmonary Bypass on Platelet (체외순환이 혈소판에 미치는 영향)

  • Choe, Jun-Yeong;Seo, Gyeong-Pil
    • Journal of Chest Surgery
    • /
    • v.21 no.1
    • /
    • pp.26-35
    • /
    • 1988
  • The effect of cardiopulmonary bypass on platelet count, platelet function, and bleeding time was studied in 60 patients. Platelet count was significantly reduced during and after cardiopulmonary bypass. Platelet function also had a reduced aggregation response to adenosine diphosphate. Bleeding time was prolonged to over 30 minutes during cardiopulmonary bypass and not returned to normal level until postbypass 1 hour. The amount of postoperative bleeding was proportional to the degree of decrease in platelet count and function, degree of decrease in platelet count and function. There was no significant correlation between duration of cardiopulmonary bypass and platelet count, platelet function, bleeding time, or amount of postoperative bleeding. Patients with cyanotic congenital heart disease showed a larger amount of postoperative bleeding than patients with acyanotic congenital heart disease [P<0.01], and this difference was due to the fact that platelet function was more significantly affected by cardiopulmonary bypass in cyanotic group. Patients using membrane oxygenator showed a less amount of postoperative bleeding than patients using bubble oxygenator [p<0.005] reflecting better preservation of platelet count and function by membrane oxygenator.

  • PDF