• Title/Summary/Keyword: oxygen water

Search Result 3,161, Processing Time 0.034 seconds

General Oceanographic Factors In Yeongil Bay Of Korea, Late October 1973 (가을철 영일만수괴의 일반해양학적 특성)

  • Kwak, Hi-Sang
    • 한국해양학회지
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1976
  • Some factors of seawater such as water temperature, salinity, pH, dissolved oxygen and asturation of dissolved oxygen were determined in 5 meters intervals from surface to bottom at 11 stations in Yeongil Bay of Korea during late October 1973. Distribution pattern of water masses in Yeongil Bay during the period seemed to be heterogeneous as dividing into two parts of surface and bottom. Water temperature, pH, dissolved oxygen and saturation of dissolved oxygen of surface water mass showed higher values and salinity of the mass showed lower values than those factors of bottom water mass. Surface water mass might be originated from Tsushima current during summer season and bottom water mass from cold body of East Sea of Korea which seemed to extend to coastal zone during winter season. Land water discharge from Hyeongsan River into the Bay is considered as a minor factor playing slight role in the water mass composition of the area.

  • PDF

Treatment of Food Waste Leachate using Pure-Oxygen Jet Loop Reactor(JLR) (순산소 Jet 폭기 시스템을 이용한 음폐수 처리 특성)

  • Yoon, Ae-Hwa;Park, Noh-Back;Bae, Jong-Hun;Jun, Hang-Bae;Kwon, Young-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.763-773
    • /
    • 2010
  • The removal efficiencies and a total oxygen transfer coefficient for food waste leachate(FWL) were estimated by using Jet Loop Reactor(JLR). Pure oxygen was used instead of air to improve oxygen concentration in the JLR for high total chemical oxygen demamd(TCOD) in FWL. In JLB, in order to examining the oxygen transfer characteristic, the circulation flowrate and oxygen flowrate were controlled with 7~10 L/min(1.5 L/min interval) and 0.2~0.5 L/min (0.1 L/min interval) and we experimented according to the each condition. As a result, Oxygen uptake rate(OUR) and oxygen transfer rate could be maximized than the oxygen flowrate to increase the circulation flowrate. In addition, it determined that JLR using the pure oxygen which can obtain the greatest oxygen transfer rate as it was the high-concentration organic wastewater like the food waste leachate through the continuous experiment was appropriate.

Oxygen Isotope Data of Winter Water in the Western Weddell Sea: Preliminary Results

  • Khim, Boo-Keun;Park, Byong-Kwon;Kang, Sung-Ho
    • Journal of the korean society of oceanography
    • /
    • v.33 no.1-2
    • /
    • pp.1-7
    • /
    • 1998
  • In the western Weddell Sea, winter mixed layer is characterized by near-freezing temperature and higher salinity due to brine injection through sea-ice formation. This layer becomes Winter Water being capped by warmer and less saline Antarctic Surface Water during the sea-ice melt-ing season. In this study, Winter Water was preliminarily identified by the oxygen isotopic com-positions. The ${\delta}^{18}$O values of Winter Water show the progressively increasing trend from south to north in the study area. It presumably reflects the enhanced mixing with Antarctic Surface Water due to the extent of influence by low S'"0 value of sea-ice/glacier meltwater. Correlations between salinity and 6'"0 values of seawater can be used to more generally characterize Winter Water with a view to identification. However, the prediction on the degree of mixing from these relationships needs more detailed isotope data, although this study allows the oxygen isotopic composition of seawater as a tracer to identify the water mass.

  • PDF

Mode Change of Deep Water Formation Deduced from Slow Variation of Thermal Structure: One-dimensional Model Study (열적 수직 구조의 장기 변화로부터 유추한 동해 심층수 형성 모드의 변환: 1차원 모델 연구)

  • Chae, Yeong-Ki;Seung, Young-Ho;Kang, Sok-Kuh
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Recently, it has been observed in the East Sea that temperature increases below the thermocline, and dissolved oxygen increase in the intermediate layer but decrease below it. The layer of minimum dissolved oxygen deepens and the bottom homogeneous layer in oxygen becomes thinner. It emerges very probably that these changes are induced by the mode change of deep water formation associated with global warming. To further support this hypothesis, a one-dimensional model experiment is performed. First, a thermal profile is obtained by injecting a cold and high oxygen deep water into the bottom layer, say the bottom mode. Then, two thermal profiles are obtained from the bottom mode profile by assuming that either all the deep water introduce into the intermediate layer has been initiated, say the intermediate mode, or that only a part of the deep water has been initiated into the intermediate layer, say the intermediate-bottom mode. The results, from the intermediate-bottom mode experiment are closest to the observed results. They show quite well the tendency for oxygen to increase in the intermediate layer and the simultaneous thinning of the bottom homogeneous layer in oxygen. Therefore, it can be said that the recently observed slow variation of the thermal structure might be associated with changes in the deep water formation from the bottom mode to the intermediate-bottom mode.

Dissolved Oxygen Trend in Sapgyo Stream Watershed (삽교천유역의 용존산소 추세)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.667-681
    • /
    • 2013
  • In this study, monthly and seasonal dissolved oxygen trends of 19 water quality measurement stations in Sapgyo stream watershed were analyzed using monthly dissolved oxygen (DO) data measured for 16 years (1995~2010). Mann-Kendall trend test and Sen's slope estimator were carried out for trend analysis. Furthermore, Sapgyo stream watershed was divided into four different sections (Sapgyo stream, Muhan stream, Gykgyo stream, and Sapgyo lake) and chi-square test of homogeneity for DO trend was carried out for four different sections. The study results indicated that most of water quality measurement stations showed increasing or non-significant trend of DO on a monthly and seasonal basis. The chi-square test of homogeneity for each water quality measurement station showed the statistical homogeneity in seasonal DO trend; however, the test results showed the statistical non-homogeneity in monthly DO trend for the stations located in the reservoir. Overall, the dissolved oxygen trend in each water quality measurement station showed different patterns depending on the location of each station and season.

Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics (산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

Effect of Water Temperature and Photoperiod on the Oxygen Consumption of Four Different Strains of Red Seabream, Pagrus major

  • Oh, Sung-Yong;Choi, Hee Jung;Kim, Min-Suk;Park, Yong Joo;Myoung, Jung-Goo;Kwon, Joon Yeong;Choi, Cheol Young
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • We determined the effects of different water temperatures (15, 20, and 25℃) and photoperiod cycles (24L:0D, 12L:12D, and 0L:24D) on the oxygen consumption of the offspring of a cultured Japanese strain (JJ), a selected Korean strain (KK), and intraspecific hybrid strains (JK and KJ) of red seabream, Pagrus major, under starvation conditions. The different fish strains, water temperatures, and photoperiod cycles had effects on the mean oxygen consumption of fish. Oxygen consumption increased with increasing water temperatures for all photoperiod treatments (p<0.001). Fish held in continuous darkness (0L:24D) used consistently less oxygen than fish exposed to continuous light (p<0.05). The oxygen consumption of fish exposed to the light phase in a 12L:12D photoperiod was higher than that of fish in the dark phase of the 12L:12D cycle, and differences were significant in three of the strains: JJ (15℃), KK (15 and 20℃), and KJ (25℃). The oxygen consumption of the inbred (JJ and KK) and intraspecific hybrid (JK and KJ) strains varied with differing water temperatures and photoperiod cycles. The JK strain displayed significantly higher oxygen consumption than the other strains under all experimental conditions except 15℃ with a 0L:24D photoperiod. The JK and KJ strains usually showed the highest and lowest oxygen consumption values, respectively, whereas the inbred strains exhibited intermediate values. Oxygen consumption in the JJ and JK strains was usually higher than that of the KK and KJ strains. We propose that differences in the thermal sensitivity and photosensitization properties of the strains contribute to differences in their ability to adapt to changes in water temperature and photoperiod, thus resulting in differences in the amplitude of their metabolic rates.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

An Experimental Study on the Pond Sediment and Water Quality Purification using Oxygen Solubilization Device(OSD) System (산소용해수를 이용한 호소 저질 및 수질개선에 관한 실험적 연구)

  • Kim, Young-Taek;Bae, Yoon-Sun;Roh, Eun-Kyung;Park, Chul-Hwi;Lee, Yeon-Ku
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.94-103
    • /
    • 2006
  • The pollution in closing water can be caused by not only artificial factor like sewage but also natural factor like elution from sediment. In this study we analyzed Sediment Oxygen Demand (SOD) for verification of sediment purification effect and sediment elution experiment as well as general items like COD, TN, TP, SS to complement and assess the effect of sediment and water quality. The experiment result showed that the release rate of OSD system were 4 times and 3 times as large as control for P and Fe respectively. SOD for operated OSD system and control were $12.18gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ and $47.95gO_2{\cdot}m^{-2}{\cdot}d^{-1}$. From water qualities analyzed by COD, TN, TP, SS, chlorophyll-a, the removal efficiency increase of TN, TP, chlorophyll-a and COD were about 10~20%, 40~50% and 10% respectively. In conclusion, OSD can contribute to improvement of both the waterbody and the sediment environment effectively.

A Study on Kinetics of Oxygen in Small Size Pond using Oxygen Solubilization Device System (산소 용해수 발생 장치를 이용한 소형 연못의 산소 거동 연구)

  • Kim, Young-Taek;Bae, Yoon-Sun;Roh, Eun-Kyung;Park, Chul-Hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.475-481
    • /
    • 2006
  • The major problem in closing water like lakes and ponds in Korea is that because they are exposed to surrounding, so easily polluted. The pollution in closing water can be caused by not only artificial factor like sewage but also natural factor like elution from sediment. For insurance of safe and satisfied water source, lots of studies and projects are now going on. In this study, we examined the behavior and effect of microbubble ($3{\sim}10{\mu}m$) produced by device called O.S.D (Oxygen Solubillization Device) in small size pond. The value of oxygen transfer coefficient ($K_La$) was 0.68/min independently of air flow rate, 6.5 times higher than commercial aeration stone and the variation of nitrogen concentration was $0.008NO_3/O_2$, DO concentration was potentially saturated for 24 hr. From the results of pilot plant, SOD of experiment (O.S.D) and control were $12.18gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ and $47.95gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ respectively. In conclusion, because O.S.D has extraordinary physico-chemical characteristics, it can contribute to improvement of both the waterbody and the sediment environment.